YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modulation of the Period of the Quasi-Biennial Oscillation by the Solar Cycle

    Source: Journal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 008::page 2418
    Author:
    Kuai, Le
    ,
    Shia, Run-Lie
    ,
    Jiang, Xun
    ,
    Tung, Ka Kit
    ,
    Yung, Yuk L.
    DOI: 10.1175/2009JAS2958.1
    Publisher: American Meteorological Society
    Abstract: The authors examine the mechanism of solar cycle modulation of the Quasi-Biennial Oscillation (QBO) period using the Two-and-a-Half-Dimensional Interactive Isentropic Research (THINAIR) model. Previous model results (using 2D and 3D models of varying complexity) have not convincingly established the proposed link of longer QBO periods during solar minima. Observational evidence for such a modulation is also controversial because it is only found during the period from the 1960s to the early 1990s, which is contaminated by volcanic aerosols. In the model, 200- and 400-yr runs without volcano influence can be obtained, long enough to establish some statistical robustness. Both in model and observed data, there is a strong synchronization of the QBO period with integer multiples of the semiannual oscillation (SAO) in the upper stratosphere. Under the current level of wave forcing, the period of the QBO jumps from one multiple of SAO to another and back so that it averages to 28 months, never settling down to a constant period. The ?decadal? variability in the QBO period takes the form of ?quantum? jumps; these, however, do not appear to follow the level of the solar flux in either the observation or the model using realistic quasi-periodic solar cycle (SC) forcing. To understand the solar modulation of the QBO period, the authors perform model runs with a range of perpetual solar forcing, either lower or higher than the current level. At the current level of solar forcing, the model QBO period consists of a distribution of four and five SAO periods, similar to the observed distribution. This distribution changes as solar forcing changes. For lower (higher) solar forcing, the distribution shifts to more (less) four SAO periods than five SAO periods. The record-averaged QBO period increases with the solar forcing. However, because this effect is rather weak and is detectable only with exaggerated forcing, the authors suggest that the previous result of the anticorrelation of the QBO period with the SC seen in short observational records reflects only a chance behavior of the QBO period, which naturally jumps in a nonstationary manner even if the solar forcing is held constant, and the correlation can change as the record gets longer.
    • Download: (2.198Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modulation of the Period of the Quasi-Biennial Oscillation by the Solar Cycle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209982
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorKuai, Le
    contributor authorShia, Run-Lie
    contributor authorJiang, Xun
    contributor authorTung, Ka Kit
    contributor authorYung, Yuk L.
    date accessioned2017-06-09T16:28:10Z
    date available2017-06-09T16:28:10Z
    date copyright2009/08/01
    date issued2009
    identifier issn0022-4928
    identifier otherams-68425.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209982
    description abstractThe authors examine the mechanism of solar cycle modulation of the Quasi-Biennial Oscillation (QBO) period using the Two-and-a-Half-Dimensional Interactive Isentropic Research (THINAIR) model. Previous model results (using 2D and 3D models of varying complexity) have not convincingly established the proposed link of longer QBO periods during solar minima. Observational evidence for such a modulation is also controversial because it is only found during the period from the 1960s to the early 1990s, which is contaminated by volcanic aerosols. In the model, 200- and 400-yr runs without volcano influence can be obtained, long enough to establish some statistical robustness. Both in model and observed data, there is a strong synchronization of the QBO period with integer multiples of the semiannual oscillation (SAO) in the upper stratosphere. Under the current level of wave forcing, the period of the QBO jumps from one multiple of SAO to another and back so that it averages to 28 months, never settling down to a constant period. The ?decadal? variability in the QBO period takes the form of ?quantum? jumps; these, however, do not appear to follow the level of the solar flux in either the observation or the model using realistic quasi-periodic solar cycle (SC) forcing. To understand the solar modulation of the QBO period, the authors perform model runs with a range of perpetual solar forcing, either lower or higher than the current level. At the current level of solar forcing, the model QBO period consists of a distribution of four and five SAO periods, similar to the observed distribution. This distribution changes as solar forcing changes. For lower (higher) solar forcing, the distribution shifts to more (less) four SAO periods than five SAO periods. The record-averaged QBO period increases with the solar forcing. However, because this effect is rather weak and is detectable only with exaggerated forcing, the authors suggest that the previous result of the anticorrelation of the QBO period with the SC seen in short observational records reflects only a chance behavior of the QBO period, which naturally jumps in a nonstationary manner even if the solar forcing is held constant, and the correlation can change as the record gets longer.
    publisherAmerican Meteorological Society
    titleModulation of the Period of the Quasi-Biennial Oscillation by the Solar Cycle
    typeJournal Paper
    journal volume66
    journal issue8
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2009JAS2958.1
    journal fristpage2418
    journal lastpage2428
    treeJournal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian