YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Systematic Metastable Atmospheric Regime Identification in an AGCM

    Source: Journal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 007::page 1997
    Author:
    Franzke, Christian
    ,
    Horenko, Illia
    ,
    Majda, Andrew J.
    ,
    Klein, Rupert
    DOI: 10.1175/2009JAS2939.1
    Publisher: American Meteorological Society
    Abstract: In this study the authors apply a recently developed clustering method for the systematic identification of metastable atmospheric regimes in high-dimensional datasets generated by atmospheric models. The novelty of this approach is that it decomposes the phase space in, possibly, overlapping clusters and simultaneously estimates the most likely switching sequence among the clusters. The parameters of the clustering and switching are estimated by a finite element approach. The switching among the clusters can be described by a Markov transition matrix. Possible metastable regime behavior is assessed by inspecting the eigenspectrum of the associated transition probability matrix. The recently introduced metastable data-analysis method is applied to high-dimensional datasets produced by a barotropic model and a comprehensive atmospheric general circulation model (GCM). Significant and dynamically relevant metastable regimes are successfully identified in both models. The metastable regimes in the barotropic model correspond to blocked and zonal states. Similar regime states were already previously identified in highly reduced phase spaces of just one and two dimensions in the same model. Next, the clustering method is applied to a comprehensive atmospheric GCM in which seven significant flow regimes are identified. The spatial structures of the regimes correspond to, among others, both phases of the Northern Annular Mode and Pacific blocking. The regimes are maintained predominantly by transient eddy fluxes of low-pass-filtered anomalies. It is demonstrated how the dynamical description of the slow process switching between the regimes can be acquired from the analysis results, and an investigation of the resulting simplified dynamical model with respect to predictability is performed. A predictability study shows that a simple Markov model is able to predict the regimes up to six days ahead, comparable to the ability of high-resolution state-of-the-art numerical weather prediction models to accurately predict the onset and decay of blockings. The implications of the results for derivation of reduced models for extended-range predictability are discussed.
    • Download: (3.719Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Systematic Metastable Atmospheric Regime Identification in an AGCM

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209969
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorFranzke, Christian
    contributor authorHorenko, Illia
    contributor authorMajda, Andrew J.
    contributor authorKlein, Rupert
    date accessioned2017-06-09T16:28:08Z
    date available2017-06-09T16:28:08Z
    date copyright2009/07/01
    date issued2009
    identifier issn0022-4928
    identifier otherams-68413.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209969
    description abstractIn this study the authors apply a recently developed clustering method for the systematic identification of metastable atmospheric regimes in high-dimensional datasets generated by atmospheric models. The novelty of this approach is that it decomposes the phase space in, possibly, overlapping clusters and simultaneously estimates the most likely switching sequence among the clusters. The parameters of the clustering and switching are estimated by a finite element approach. The switching among the clusters can be described by a Markov transition matrix. Possible metastable regime behavior is assessed by inspecting the eigenspectrum of the associated transition probability matrix. The recently introduced metastable data-analysis method is applied to high-dimensional datasets produced by a barotropic model and a comprehensive atmospheric general circulation model (GCM). Significant and dynamically relevant metastable regimes are successfully identified in both models. The metastable regimes in the barotropic model correspond to blocked and zonal states. Similar regime states were already previously identified in highly reduced phase spaces of just one and two dimensions in the same model. Next, the clustering method is applied to a comprehensive atmospheric GCM in which seven significant flow regimes are identified. The spatial structures of the regimes correspond to, among others, both phases of the Northern Annular Mode and Pacific blocking. The regimes are maintained predominantly by transient eddy fluxes of low-pass-filtered anomalies. It is demonstrated how the dynamical description of the slow process switching between the regimes can be acquired from the analysis results, and an investigation of the resulting simplified dynamical model with respect to predictability is performed. A predictability study shows that a simple Markov model is able to predict the regimes up to six days ahead, comparable to the ability of high-resolution state-of-the-art numerical weather prediction models to accurately predict the onset and decay of blockings. The implications of the results for derivation of reduced models for extended-range predictability are discussed.
    publisherAmerican Meteorological Society
    titleSystematic Metastable Atmospheric Regime Identification in an AGCM
    typeJournal Paper
    journal volume66
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2009JAS2939.1
    journal fristpage1997
    journal lastpage2012
    treeJournal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian