YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reexamining the Vertical Structure of Tangential Winds in Tropical Cyclones: Observations and Theory

    Source: Journal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 012::page 3579
    Author:
    Stern, Daniel P.
    ,
    Nolan, David S.
    DOI: 10.1175/2009JAS2916.1
    Publisher: American Meteorological Society
    Abstract: A few commonly held beliefs regarding the vertical structure of tropical cyclones drawn from prior studies, both observational and theoretical, are examined in this study. One of these beliefs is that the outward slope of the radius of maximum winds (RMW) is a function of the size of the RMW. Another belief is that the outward slope of the RMW is also a function of the intensity of the storm. Specifically, Shea and Gray found that the RMW becomes increasingly vertical with increasing intensity and decreasing radius. The third belief evaluated here is that the RMW is a surface of constant absolute angular momentum M. These three conventional wisdoms of vertical structure are revisited with a dataset of three-dimensional Doppler wind analyses, comprising seven hurricanes on 17 different days. Azimuthal mean tangential winds are calculated for each storm, and the slopes of the RMW and M surfaces are objectively determined. The outward slope of the RMW is shown to increase with radius, which supports prior studies. In contrast to prior results, no relationship is found between the slope of the RMW and intensity. It is shown that the RMW is indeed closely approximated by an M surface for the majority of storms. However, there is a small but systematic tendency for M to decrease upward along the RMW. Utilizing Emanuel?s analytical hurricane model, a new equation is derived for the slope of the RMW in radius?pressure space. This predicts a linear increase of slope with radius and essentially no dependence of slope on intensity. An exactly analogous equation can be derived in log-pressure height coordinates, and a numerical solution yields the same conclusions in geometric height coordinates. These conclusions are further supported by the results of simulations utilizing Emanuel?s simple, time-dependent, axisymmetric hurricane model. As both the model and the analytical theory are governed by the dual constraints of thermal wind balance and slantwise moist neutrality, it is demonstrated that it is these two assumptions that require the slope of the RMW to be a function of its size but not of the intensity of the storm. Finally, it is shown that within the context of Emanuel?s theory, the RMW must very closely approximate an M surface through most of the depth of the vortex.
    • Download: (1.425Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reexamining the Vertical Structure of Tangential Winds in Tropical Cyclones: Observations and Theory

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209962
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorStern, Daniel P.
    contributor authorNolan, David S.
    date accessioned2017-06-09T16:28:07Z
    date available2017-06-09T16:28:07Z
    date copyright2009/12/01
    date issued2009
    identifier issn0022-4928
    identifier otherams-68407.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209962
    description abstractA few commonly held beliefs regarding the vertical structure of tropical cyclones drawn from prior studies, both observational and theoretical, are examined in this study. One of these beliefs is that the outward slope of the radius of maximum winds (RMW) is a function of the size of the RMW. Another belief is that the outward slope of the RMW is also a function of the intensity of the storm. Specifically, Shea and Gray found that the RMW becomes increasingly vertical with increasing intensity and decreasing radius. The third belief evaluated here is that the RMW is a surface of constant absolute angular momentum M. These three conventional wisdoms of vertical structure are revisited with a dataset of three-dimensional Doppler wind analyses, comprising seven hurricanes on 17 different days. Azimuthal mean tangential winds are calculated for each storm, and the slopes of the RMW and M surfaces are objectively determined. The outward slope of the RMW is shown to increase with radius, which supports prior studies. In contrast to prior results, no relationship is found between the slope of the RMW and intensity. It is shown that the RMW is indeed closely approximated by an M surface for the majority of storms. However, there is a small but systematic tendency for M to decrease upward along the RMW. Utilizing Emanuel?s analytical hurricane model, a new equation is derived for the slope of the RMW in radius?pressure space. This predicts a linear increase of slope with radius and essentially no dependence of slope on intensity. An exactly analogous equation can be derived in log-pressure height coordinates, and a numerical solution yields the same conclusions in geometric height coordinates. These conclusions are further supported by the results of simulations utilizing Emanuel?s simple, time-dependent, axisymmetric hurricane model. As both the model and the analytical theory are governed by the dual constraints of thermal wind balance and slantwise moist neutrality, it is demonstrated that it is these two assumptions that require the slope of the RMW to be a function of its size but not of the intensity of the storm. Finally, it is shown that within the context of Emanuel?s theory, the RMW must very closely approximate an M surface through most of the depth of the vortex.
    publisherAmerican Meteorological Society
    titleReexamining the Vertical Structure of Tangential Winds in Tropical Cyclones: Observations and Theory
    typeJournal Paper
    journal volume66
    journal issue12
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2009JAS2916.1
    journal fristpage3579
    journal lastpage3600
    treeJournal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian