YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison of Methods Used to Generate Probabilistic Quantitative Precipitation Forecasts over South America

    Source: Weather and Forecasting:;2009:;volume( 024 ):;issue: 001::page 319
    Author:
    Ruiz, Juan
    ,
    Saulo, Celeste
    ,
    Kalnay, Eugenia
    DOI: 10.1175/2008WAF2007098.1
    Publisher: American Meteorological Society
    Abstract: In this work, the quality of several probabilistic quantitative precipitation forecasts (PQPFs) is examined. The analysis is focused over South America during a 2-month period in the warm season. Several ways of generating and calibrating the PQPFs have been tested, using different ensemble systems and single-model runs. Two alternative calibration techniques (static and dynamic) have been tested. To take into account different precipitation regimes, PQPF performance has been evaluated over two regions: the northern part of South America, characterized by a tropical regime, and the southern part, where synoptic-scale forcing is stronger. The results support the adoption of such area separation, since differences in the precipitation regimes produce significant differences in PQPF performance. The more skillful PQPFs are the ones obtained after calibration. PQPFs derived from the ensemble mean also show higher skill and better reliability than those derived from the single ensemble members. The performance of the PQPFs derived from both ensemble systems is similar over the southern part of the region; however, over the northern part the superensemble approach seems to achieve better results in both reliability and skill. Finally, the impact of using Climate Prediction Center morphing technique (CMORPH) estimates to calibrate the precipitation forecast has been explored since the more extensive coverage of this dataset would allow its use over areas where the rain gauge coverage is insufficient. Results suggest that systematic biases present in the CMORPH estimates produce only a slight degradation of the resulting PQPF.
    • Download: (1.155Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison of Methods Used to Generate Probabilistic Quantitative Precipitation Forecasts over South America

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209573
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorRuiz, Juan
    contributor authorSaulo, Celeste
    contributor authorKalnay, Eugenia
    date accessioned2017-06-09T16:26:57Z
    date available2017-06-09T16:26:57Z
    date copyright2009/02/01
    date issued2009
    identifier issn0882-8156
    identifier otherams-68057.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209573
    description abstractIn this work, the quality of several probabilistic quantitative precipitation forecasts (PQPFs) is examined. The analysis is focused over South America during a 2-month period in the warm season. Several ways of generating and calibrating the PQPFs have been tested, using different ensemble systems and single-model runs. Two alternative calibration techniques (static and dynamic) have been tested. To take into account different precipitation regimes, PQPF performance has been evaluated over two regions: the northern part of South America, characterized by a tropical regime, and the southern part, where synoptic-scale forcing is stronger. The results support the adoption of such area separation, since differences in the precipitation regimes produce significant differences in PQPF performance. The more skillful PQPFs are the ones obtained after calibration. PQPFs derived from the ensemble mean also show higher skill and better reliability than those derived from the single ensemble members. The performance of the PQPFs derived from both ensemble systems is similar over the southern part of the region; however, over the northern part the superensemble approach seems to achieve better results in both reliability and skill. Finally, the impact of using Climate Prediction Center morphing technique (CMORPH) estimates to calibrate the precipitation forecast has been explored since the more extensive coverage of this dataset would allow its use over areas where the rain gauge coverage is insufficient. Results suggest that systematic biases present in the CMORPH estimates produce only a slight degradation of the resulting PQPF.
    publisherAmerican Meteorological Society
    titleComparison of Methods Used to Generate Probabilistic Quantitative Precipitation Forecasts over South America
    typeJournal Paper
    journal volume24
    journal issue1
    journal titleWeather and Forecasting
    identifier doi10.1175/2008WAF2007098.1
    journal fristpage319
    journal lastpage336
    treeWeather and Forecasting:;2009:;volume( 024 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian