YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    NWS Tornado Warnings with Zero or Negative Lead Times

    Source: Weather and Forecasting:;2009:;volume( 024 ):;issue: 001::page 140
    Author:
    Brotzge, J.
    ,
    Erickson, S.
    DOI: 10.1175/2008WAF2007076.1
    Publisher: American Meteorological Society
    Abstract: During a 5-yr period of study from 2000 to 2004, slightly more than 10% of all National Weather Service (NWS) tornado warnings were issued either simultaneously as the tornado formed (i.e., with zero lead time) or minutes after initial tornado formation but prior to tornado dissipation (i.e., with ?negative? lead time). This study examines why these tornadoes were not warned in advance, and what climate, storm morphology, and sociological factors may have played a role in delaying the issuance of the warning. This dataset of zero and negative lead time warnings are sorted by their F-scale ratings, geographically by region and weather forecast office (WFO), hour of the day, month of the year, tornado-to-radar distance, county population density, and number of tornadoes by day, hour, and order of occurrence. Two key results from this study are (i) providing advance warning on the first tornado of the day remains a difficult challenge and (ii) the more isolated the tornado event, the less likelihood that an advance warning is provided. WFOs that experience many large-scale outbreaks have a lower proportion of warnings with negative lead time than WFOs that experience many more isolated, one-tornado or two-tornado warning days. Monthly and geographic trends in lead time are directly impacted by the number of multiple tornado events. Except for a few isolated cases, the impacts of tornado-to-radar distance, county population density, and storm morphology did not have a significant impact on negative lead-time warnings.
    • Download: (1.646Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      NWS Tornado Warnings with Zero or Negative Lead Times

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209558
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorBrotzge, J.
    contributor authorErickson, S.
    date accessioned2017-06-09T16:26:54Z
    date available2017-06-09T16:26:54Z
    date copyright2009/02/01
    date issued2009
    identifier issn0882-8156
    identifier otherams-68043.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209558
    description abstractDuring a 5-yr period of study from 2000 to 2004, slightly more than 10% of all National Weather Service (NWS) tornado warnings were issued either simultaneously as the tornado formed (i.e., with zero lead time) or minutes after initial tornado formation but prior to tornado dissipation (i.e., with ?negative? lead time). This study examines why these tornadoes were not warned in advance, and what climate, storm morphology, and sociological factors may have played a role in delaying the issuance of the warning. This dataset of zero and negative lead time warnings are sorted by their F-scale ratings, geographically by region and weather forecast office (WFO), hour of the day, month of the year, tornado-to-radar distance, county population density, and number of tornadoes by day, hour, and order of occurrence. Two key results from this study are (i) providing advance warning on the first tornado of the day remains a difficult challenge and (ii) the more isolated the tornado event, the less likelihood that an advance warning is provided. WFOs that experience many large-scale outbreaks have a lower proportion of warnings with negative lead time than WFOs that experience many more isolated, one-tornado or two-tornado warning days. Monthly and geographic trends in lead time are directly impacted by the number of multiple tornado events. Except for a few isolated cases, the impacts of tornado-to-radar distance, county population density, and storm morphology did not have a significant impact on negative lead-time warnings.
    publisherAmerican Meteorological Society
    titleNWS Tornado Warnings with Zero or Negative Lead Times
    typeJournal Paper
    journal volume24
    journal issue1
    journal titleWeather and Forecasting
    identifier doi10.1175/2008WAF2007076.1
    journal fristpage140
    journal lastpage154
    treeWeather and Forecasting:;2009:;volume( 024 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian