YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Optimal Bulk Wind Differential Depth and the Utility of the Upper-Tropospheric Storm-Relative Flow for Forecasting Supercells

    Source: Weather and Forecasting:;2008:;volume( 023 ):;issue: 005::page 825
    Author:
    Houston, Adam L.
    ,
    Thompson, Richard L.
    ,
    Edwards, Roger
    DOI: 10.1175/2008WAF2007007.1
    Publisher: American Meteorological Society
    Abstract: An analysis of 4 yr of Rapid Update Cycle-2 (RUC-2) derived soundings in proximity to radar-observed supercells and nonsupercells is conducted in an effort to answer two questions: 1) over what depth is the fixed-layer bulk wind differential (BWD; the vector difference between the wind velocity at a given level and the wind velocity at the surface) the best discriminator between supercell and nonsupercell environments and 2) does the upper-tropospheric storm-relative flow (UTSRF) discriminate between the environments of supercells and nonsupercells? Previous climatologies of sounding-based supercell forecast parameters have documented the ability of the 0?6-km BWD in delineating supercell from nonsupercell environments. However, a systematic examination of a wide range of layers has never been documented. The UTSRF has previously been tested as a parameter for discriminating between supercell and nonsupercell environments and there is some evidence that supercells may be sensitive to the UTSRF. However, this sensitivity may be a consequence of the correlation between UTSRF and the surface to midtropospheric BWD. Accurately assessing the ability of the UTSRF to distinguish between supercell and nonsupercell environments requires controlling for the surface to midtropospheric BWD. It is shown that the bulk wind differential within the 0?5-km layer delineates best between supercell and nonsupercell environments. Analysis of the UTSRF demonstrates that even when not controlling for the BWD, the UTSRF has limited reliability in forecasting supercells. The lack of merit in using the UTSRF to forecast supercells is particularly evident when it is isolated from the BWD. Because the UTSRF and BWD are not independent, controlling for the BWD when examining the UTSRF reveals that the UTSRF is not a fundamental parameter that can be used to distinguish supercell from nonsupercell environments. Therefore, this work demonstrates that the UTSRF is an unreliable metric for forecasting supercell events.
    • Download: (1.644Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Optimal Bulk Wind Differential Depth and the Utility of the Upper-Tropospheric Storm-Relative Flow for Forecasting Supercells

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209537
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorHouston, Adam L.
    contributor authorThompson, Richard L.
    contributor authorEdwards, Roger
    date accessioned2017-06-09T16:26:51Z
    date available2017-06-09T16:26:51Z
    date copyright2008/10/01
    date issued2008
    identifier issn0882-8156
    identifier otherams-68024.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209537
    description abstractAn analysis of 4 yr of Rapid Update Cycle-2 (RUC-2) derived soundings in proximity to radar-observed supercells and nonsupercells is conducted in an effort to answer two questions: 1) over what depth is the fixed-layer bulk wind differential (BWD; the vector difference between the wind velocity at a given level and the wind velocity at the surface) the best discriminator between supercell and nonsupercell environments and 2) does the upper-tropospheric storm-relative flow (UTSRF) discriminate between the environments of supercells and nonsupercells? Previous climatologies of sounding-based supercell forecast parameters have documented the ability of the 0?6-km BWD in delineating supercell from nonsupercell environments. However, a systematic examination of a wide range of layers has never been documented. The UTSRF has previously been tested as a parameter for discriminating between supercell and nonsupercell environments and there is some evidence that supercells may be sensitive to the UTSRF. However, this sensitivity may be a consequence of the correlation between UTSRF and the surface to midtropospheric BWD. Accurately assessing the ability of the UTSRF to distinguish between supercell and nonsupercell environments requires controlling for the surface to midtropospheric BWD. It is shown that the bulk wind differential within the 0?5-km layer delineates best between supercell and nonsupercell environments. Analysis of the UTSRF demonstrates that even when not controlling for the BWD, the UTSRF has limited reliability in forecasting supercells. The lack of merit in using the UTSRF to forecast supercells is particularly evident when it is isolated from the BWD. Because the UTSRF and BWD are not independent, controlling for the BWD when examining the UTSRF reveals that the UTSRF is not a fundamental parameter that can be used to distinguish supercell from nonsupercell environments. Therefore, this work demonstrates that the UTSRF is an unreliable metric for forecasting supercell events.
    publisherAmerican Meteorological Society
    titleThe Optimal Bulk Wind Differential Depth and the Utility of the Upper-Tropospheric Storm-Relative Flow for Forecasting Supercells
    typeJournal Paper
    journal volume23
    journal issue5
    journal titleWeather and Forecasting
    identifier doi10.1175/2008WAF2007007.1
    journal fristpage825
    journal lastpage837
    treeWeather and Forecasting:;2008:;volume( 023 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian