YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Recurving Tropical Cyclones: Singular Vector Sensitivity and Downstream Impacts

    Source: Monthly Weather Review:;2009:;volume( 137 ):;issue: 004::page 1320
    Author:
    Reynolds, Carolyn A.
    ,
    Peng, Melinda S.
    ,
    Chen, Jan-Huey
    DOI: 10.1175/2008MWR2652.1
    Publisher: American Meteorological Society
    Abstract: Singular vectors (SVs) are used to study the sensitivity of 2-day forecasts of recurving tropical cyclones (TCs) in the western North Pacific to changes in the initial state. The SVs are calculated using the tangent and adjoint models of the Navy Operational Global Atmospheric Prediction System (NOGAPS) for 72 forecasts for 18 TCs in the western North Pacific during 2006. In addition to the linear SV calculation, nonlinear perturbation experiments are also performed in order to examine 1) the similarity between nonlinear and linear perturbation growth and 2) the downstream impacts over the North Pacific and North America that result from changes to the 2-day TC forecast. Both nonrecurving and recurving 2-day storm forecasts are sensitive to changes in the initial state in the near-storm environment (in an annulus approximately 500 km from the storm center). During recurvature, sensitivity develops to the northwest of the storm, usually associated with a trough moving in from the west. These upstream sensitivities can occur as far as 4000 km to the northwest of the storm, over the Asian mainland, which has implications for adaptive observations. Nonlinear perturbation experiments indicate that the linear calculations reflect case-to-case variability in actual nonlinear perturbation growth fairly well, especially when the growth is large. The nonlinear perturbations show that for recurving tropical cyclones, small initial perturbations optimized to change the 2-day TC forecast can grow and propagate downstream quickly, reaching North America in 5 days. The fastest 5-day perturbation growth is associated with recurving storm forecasts that occur when the baroclinic instability over the North Pacific is relatively large. These results suggest that nonlinear forecasts perturbed using TC SVs may have utility for predicting the downstream impact of TC forecast errors over the North Pacific and North America.
    • Download: (5.400Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Recurving Tropical Cyclones: Singular Vector Sensitivity and Downstream Impacts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209486
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorReynolds, Carolyn A.
    contributor authorPeng, Melinda S.
    contributor authorChen, Jan-Huey
    date accessioned2017-06-09T16:26:40Z
    date available2017-06-09T16:26:40Z
    date copyright2009/04/01
    date issued2009
    identifier issn0027-0644
    identifier otherams-67980.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209486
    description abstractSingular vectors (SVs) are used to study the sensitivity of 2-day forecasts of recurving tropical cyclones (TCs) in the western North Pacific to changes in the initial state. The SVs are calculated using the tangent and adjoint models of the Navy Operational Global Atmospheric Prediction System (NOGAPS) for 72 forecasts for 18 TCs in the western North Pacific during 2006. In addition to the linear SV calculation, nonlinear perturbation experiments are also performed in order to examine 1) the similarity between nonlinear and linear perturbation growth and 2) the downstream impacts over the North Pacific and North America that result from changes to the 2-day TC forecast. Both nonrecurving and recurving 2-day storm forecasts are sensitive to changes in the initial state in the near-storm environment (in an annulus approximately 500 km from the storm center). During recurvature, sensitivity develops to the northwest of the storm, usually associated with a trough moving in from the west. These upstream sensitivities can occur as far as 4000 km to the northwest of the storm, over the Asian mainland, which has implications for adaptive observations. Nonlinear perturbation experiments indicate that the linear calculations reflect case-to-case variability in actual nonlinear perturbation growth fairly well, especially when the growth is large. The nonlinear perturbations show that for recurving tropical cyclones, small initial perturbations optimized to change the 2-day TC forecast can grow and propagate downstream quickly, reaching North America in 5 days. The fastest 5-day perturbation growth is associated with recurving storm forecasts that occur when the baroclinic instability over the North Pacific is relatively large. These results suggest that nonlinear forecasts perturbed using TC SVs may have utility for predicting the downstream impact of TC forecast errors over the North Pacific and North America.
    publisherAmerican Meteorological Society
    titleRecurving Tropical Cyclones: Singular Vector Sensitivity and Downstream Impacts
    typeJournal Paper
    journal volume137
    journal issue4
    journal titleMonthly Weather Review
    identifier doi10.1175/2008MWR2652.1
    journal fristpage1320
    journal lastpage1337
    treeMonthly Weather Review:;2009:;volume( 137 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian