YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bow Echo Mesovortices. Part I: Processes That Influence Their Damaging Potential

    Source: Monthly Weather Review:;2009:;volume( 137 ):;issue: 005::page 1497
    Author:
    Atkins, Nolan T.
    ,
    St. Laurent, Michael
    DOI: 10.1175/2008MWR2649.1
    Publisher: American Meteorological Society
    Abstract: This two-part study examines the damaging potential and genesis of low-level, meso-?-scale mesovortices formed within bow echoes. This was accomplished by analyzing quasi-idealized simulations of the 10 June 2003 Saint Louis bow echo event observed during the Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX). This bow echo produced both damaging and nondamaging mesovortices. A series of sensitivity simulations were performed to assess the impact of low- and midlevel shear, cold-pool strength, and Coriolis forcing on mesovortex strength. By analyzing the amount of circulation, maximum vertical vorticity, and number of mesovortices produced at the lowest grid level, it was observed that more numerous and stronger mesovortices were formed when the low-level environmental shear nearly balanced the horizontal shear produced by the cold pool. As the magnitude of deeper layer shear increased, the number and strength of mesovortices increased. Larger Coriolis forcing and stronger cold pools also produced stronger mesovortices. Variability of ground-relative wind speeds produced by mesovortices was noted in many of the experiments. It was observed that the strongest ground-relative wind speeds were produced by mesovortices that formed near the descending rear-inflow jet (RIJ). The strongest surface winds were located on the southern periphery of the mesovortex and were created by the superposition of the RIJ and mesovortex flows. Mesovortices formed prior to RIJ genesis or north and south of the RIJ core produced weaker ground-relative wind speeds. The forecast implications of these results are discussed. The genesis of the mesovortices is discussed in Part II.
    • Download: (2.941Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bow Echo Mesovortices. Part I: Processes That Influence Their Damaging Potential

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209483
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorAtkins, Nolan T.
    contributor authorSt. Laurent, Michael
    date accessioned2017-06-09T16:26:39Z
    date available2017-06-09T16:26:39Z
    date copyright2009/05/01
    date issued2009
    identifier issn0027-0644
    identifier otherams-67977.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209483
    description abstractThis two-part study examines the damaging potential and genesis of low-level, meso-?-scale mesovortices formed within bow echoes. This was accomplished by analyzing quasi-idealized simulations of the 10 June 2003 Saint Louis bow echo event observed during the Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX). This bow echo produced both damaging and nondamaging mesovortices. A series of sensitivity simulations were performed to assess the impact of low- and midlevel shear, cold-pool strength, and Coriolis forcing on mesovortex strength. By analyzing the amount of circulation, maximum vertical vorticity, and number of mesovortices produced at the lowest grid level, it was observed that more numerous and stronger mesovortices were formed when the low-level environmental shear nearly balanced the horizontal shear produced by the cold pool. As the magnitude of deeper layer shear increased, the number and strength of mesovortices increased. Larger Coriolis forcing and stronger cold pools also produced stronger mesovortices. Variability of ground-relative wind speeds produced by mesovortices was noted in many of the experiments. It was observed that the strongest ground-relative wind speeds were produced by mesovortices that formed near the descending rear-inflow jet (RIJ). The strongest surface winds were located on the southern periphery of the mesovortex and were created by the superposition of the RIJ and mesovortex flows. Mesovortices formed prior to RIJ genesis or north and south of the RIJ core produced weaker ground-relative wind speeds. The forecast implications of these results are discussed. The genesis of the mesovortices is discussed in Part II.
    publisherAmerican Meteorological Society
    titleBow Echo Mesovortices. Part I: Processes That Influence Their Damaging Potential
    typeJournal Paper
    journal volume137
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/2008MWR2649.1
    journal fristpage1497
    journal lastpage1513
    treeMonthly Weather Review:;2009:;volume( 137 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian