YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison of a 51-Member Low-Resolution (TL399L62) Ensemble with a 6-Member High-Resolution (TL799L91) Lagged-Forecast Ensemble

    Source: Monthly Weather Review:;2008:;volume( 136 ):;issue: 009::page 3343
    Author:
    Buizza, Roberto
    DOI: 10.1175/2008MWR2430.1
    Publisher: American Meteorological Society
    Abstract: The 51-member TL399L62 ECMWF ensemble prediction system (EPS51) is compared with a lagged ensemble system based on the six most recent ECMWF TL799L91 forecasts (LAG6). The EPS51 and LAG6 systems are compared to two 6-member ensembles with a ?weighted? ensemble-mean: EPS6wEM and LAG6wEM. EPS6wEM includes six members of EPS51 and has the ensemble mean constructed giving optimal weights to its members, while LAG6wEM includes the LAG6 six members and has the ensemble mean constructed giving optimal weights to its members. In these weighted ensembles, the optimal weights are based on 50-day forecast error statistics of each individual member (in EPS51 and LAG6 the ensemble mean is constructed giving the same weight to each individual member). The EPS51, LAG6, EPS6wEM, and LAG6wEM ensembles are compared for a 7-month period (from 1 April to 30 October 2006?213 cases) and for two of the most severe storms that hit the Scandinavian countries since 1969. The study shows that EPS51 has the best-tuned ensemble spread, and provides the best probabilistic forecasts, with differences in predictability between EPS51 and LAG6 or LAG6wEM probabilistic forecasts of geopotential height anomalies of up to 24 h. In terms of ensemble mean, EPS51 gives the best forecast from forecast day 4, but before forecast day 4 LAG6wEM provides a slightly better forecast, with differences in predictability smaller than 2 h up to forecast day 6, and of about 6 h afterward. The comparison also shows that a larger ensemble size is more important in the medium range rather than in the short range. Overall, these results indicate that if the aim of ensemble prediction is to generate not only a single (most likely) scenario but also a probabilistic forecast, than EPS51 has a higher skill than the lagged ensemble system based on LAG6 or LAG6wEM.
    • Download: (6.544Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison of a 51-Member Low-Resolution (TL399L62) Ensemble with a 6-Member High-Resolution (TL799L91) Lagged-Forecast Ensemble

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209336
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorBuizza, Roberto
    date accessioned2017-06-09T16:26:10Z
    date available2017-06-09T16:26:10Z
    date copyright2008/09/01
    date issued2008
    identifier issn0027-0644
    identifier otherams-67844.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209336
    description abstractThe 51-member TL399L62 ECMWF ensemble prediction system (EPS51) is compared with a lagged ensemble system based on the six most recent ECMWF TL799L91 forecasts (LAG6). The EPS51 and LAG6 systems are compared to two 6-member ensembles with a ?weighted? ensemble-mean: EPS6wEM and LAG6wEM. EPS6wEM includes six members of EPS51 and has the ensemble mean constructed giving optimal weights to its members, while LAG6wEM includes the LAG6 six members and has the ensemble mean constructed giving optimal weights to its members. In these weighted ensembles, the optimal weights are based on 50-day forecast error statistics of each individual member (in EPS51 and LAG6 the ensemble mean is constructed giving the same weight to each individual member). The EPS51, LAG6, EPS6wEM, and LAG6wEM ensembles are compared for a 7-month period (from 1 April to 30 October 2006?213 cases) and for two of the most severe storms that hit the Scandinavian countries since 1969. The study shows that EPS51 has the best-tuned ensemble spread, and provides the best probabilistic forecasts, with differences in predictability between EPS51 and LAG6 or LAG6wEM probabilistic forecasts of geopotential height anomalies of up to 24 h. In terms of ensemble mean, EPS51 gives the best forecast from forecast day 4, but before forecast day 4 LAG6wEM provides a slightly better forecast, with differences in predictability smaller than 2 h up to forecast day 6, and of about 6 h afterward. The comparison also shows that a larger ensemble size is more important in the medium range rather than in the short range. Overall, these results indicate that if the aim of ensemble prediction is to generate not only a single (most likely) scenario but also a probabilistic forecast, than EPS51 has a higher skill than the lagged ensemble system based on LAG6 or LAG6wEM.
    publisherAmerican Meteorological Society
    titleComparison of a 51-Member Low-Resolution (TL399L62) Ensemble with a 6-Member High-Resolution (TL799L91) Lagged-Forecast Ensemble
    typeJournal Paper
    journal volume136
    journal issue9
    journal titleMonthly Weather Review
    identifier doi10.1175/2008MWR2430.1
    journal fristpage3343
    journal lastpage3362
    treeMonthly Weather Review:;2008:;volume( 136 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian