YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Observation of the Diurnal Cycle in the Low Troposphere of West Africa

    Source: Monthly Weather Review:;2008:;volume( 136 ):;issue: 009::page 3477
    Author:
    Lothon, Marie
    ,
    Saïd, Frédérique
    ,
    Lohou, Fabienne
    ,
    Campistron, Bernard
    DOI: 10.1175/2008MWR2427.1
    Publisher: American Meteorological Society
    Abstract: The authors give an overview of the diurnal cycle of the low troposphere during 2006 at two different sites, Niamey (Niger) and Nangatchori (Benin). This study is partly based on the first observations of UHF wind profilers ever made in West Africa in the context of the African Monsoon Multidisciplinary Analysis (AMMA) project. Also used are the radiosoundings made in Niamey and ground station observations at Nangatchori, which allow for the study of the impact of the dynamics on the water vapor cycle and the turbulence observed at the ground. Profiler measurements revealed a very consistent year-round nocturnal low-level jet maximal around 0500 UTC and centered at 400-m above the ground, with wind speed around 15 m s?1. This jet comes either from the northeast during the dry season or from the southwest during the wet season, in relation with the position of the intertropical discontinuity. The radiosoundings made in Niamey highlight both the role of the nocturnal jet in bringing water vapor from the south during the night when the intertropical discontinuity has reached the vicinity of the considered area at the end of the dry season and the role of the daytime planetary boundary layer in mixing this water vapor within a larger depth of the troposphere. The planetary boundary layer processes play a large role in the diurnal cycle of the position of the intertropical discontinuity itself. The observations of turbulence made at the ground in Nangatchori showed that the best signature of the nocturnal jet close to surface can be seen in the turbulent kinetic energy and skewness of the air vertical velocity, rather than on the mean wind itself. They reveal the downward transport of momentum from the jet core aloft to the surface.
    • Download: (6.005Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Observation of the Diurnal Cycle in the Low Troposphere of West Africa

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209334
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorLothon, Marie
    contributor authorSaïd, Frédérique
    contributor authorLohou, Fabienne
    contributor authorCampistron, Bernard
    date accessioned2017-06-09T16:26:09Z
    date available2017-06-09T16:26:09Z
    date copyright2008/09/01
    date issued2008
    identifier issn0027-0644
    identifier otherams-67842.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209334
    description abstractThe authors give an overview of the diurnal cycle of the low troposphere during 2006 at two different sites, Niamey (Niger) and Nangatchori (Benin). This study is partly based on the first observations of UHF wind profilers ever made in West Africa in the context of the African Monsoon Multidisciplinary Analysis (AMMA) project. Also used are the radiosoundings made in Niamey and ground station observations at Nangatchori, which allow for the study of the impact of the dynamics on the water vapor cycle and the turbulence observed at the ground. Profiler measurements revealed a very consistent year-round nocturnal low-level jet maximal around 0500 UTC and centered at 400-m above the ground, with wind speed around 15 m s?1. This jet comes either from the northeast during the dry season or from the southwest during the wet season, in relation with the position of the intertropical discontinuity. The radiosoundings made in Niamey highlight both the role of the nocturnal jet in bringing water vapor from the south during the night when the intertropical discontinuity has reached the vicinity of the considered area at the end of the dry season and the role of the daytime planetary boundary layer in mixing this water vapor within a larger depth of the troposphere. The planetary boundary layer processes play a large role in the diurnal cycle of the position of the intertropical discontinuity itself. The observations of turbulence made at the ground in Nangatchori showed that the best signature of the nocturnal jet close to surface can be seen in the turbulent kinetic energy and skewness of the air vertical velocity, rather than on the mean wind itself. They reveal the downward transport of momentum from the jet core aloft to the surface.
    publisherAmerican Meteorological Society
    titleObservation of the Diurnal Cycle in the Low Troposphere of West Africa
    typeJournal Paper
    journal volume136
    journal issue9
    journal titleMonthly Weather Review
    identifier doi10.1175/2008MWR2427.1
    journal fristpage3477
    journal lastpage3500
    treeMonthly Weather Review:;2008:;volume( 136 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian