YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Geometric Calibration of Digital Cameras for 3D Cumulus Cloud Measurements

    Source: Journal of Atmospheric and Oceanic Technology:;2009:;volume( 026 ):;issue: 002::page 200
    Author:
    Hu, Jiuxiang
    ,
    Razdan, Anshuman
    ,
    Zehnder, Joseph A.
    DOI: 10.1175/2008JTECHA1079.1
    Publisher: American Meteorological Society
    Abstract: A technique for calibrating digital cameras for stereo photogrammetry of cumulus clouds is presented. It has been applied to characterize the formation of summer thunderstorms observed during the Cumulus Photogrammetric, In Situ, and Doppler Observations (CuPIDO) project. Starting from gross measurements of locations, orientations of cameras, and landmark surveys, accurate locations and orientations of the cameras are obtained by minimizing a geometric error (GE). Once accurate camera parameters are obtained, 3D positions of cloud-feature points are computed by triangulation. The main contributions of this paper are as follows. First, it is proven that the GE has only one minimum in the neighborhood of the real parameters of a camera. In other words, searching the minimum of the GE enables the authors to find the right camera parameters even if there are significant differences between the initial measurements and their true values. Second, a new coarse-to-fine iterative algorithm is developed that minimizes the GE and finds the camera parameters. Numerical experiments show that the coarse-to-fine algorithm is efficient and effective. Third, a new landmark survey based on a geographic information system (GIS) rather than field measurements is presented. The GIS landmark survey is an effective and efficient way to obtain landmark world coordinates for camera calibrations in these experiments. Validation of this technique is achieved by the data collected by a NASA/Earth Observing System satellite and an instrumented aircraft. This paper builds on previous research and details the calibration and 3D reconstructions.
    • Download: (1.872Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Geometric Calibration of Digital Cameras for 3D Cumulus Cloud Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209108
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorHu, Jiuxiang
    contributor authorRazdan, Anshuman
    contributor authorZehnder, Joseph A.
    date accessioned2017-06-09T16:25:32Z
    date available2017-06-09T16:25:32Z
    date copyright2009/02/01
    date issued2009
    identifier issn0739-0572
    identifier otherams-67639.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209108
    description abstractA technique for calibrating digital cameras for stereo photogrammetry of cumulus clouds is presented. It has been applied to characterize the formation of summer thunderstorms observed during the Cumulus Photogrammetric, In Situ, and Doppler Observations (CuPIDO) project. Starting from gross measurements of locations, orientations of cameras, and landmark surveys, accurate locations and orientations of the cameras are obtained by minimizing a geometric error (GE). Once accurate camera parameters are obtained, 3D positions of cloud-feature points are computed by triangulation. The main contributions of this paper are as follows. First, it is proven that the GE has only one minimum in the neighborhood of the real parameters of a camera. In other words, searching the minimum of the GE enables the authors to find the right camera parameters even if there are significant differences between the initial measurements and their true values. Second, a new coarse-to-fine iterative algorithm is developed that minimizes the GE and finds the camera parameters. Numerical experiments show that the coarse-to-fine algorithm is efficient and effective. Third, a new landmark survey based on a geographic information system (GIS) rather than field measurements is presented. The GIS landmark survey is an effective and efficient way to obtain landmark world coordinates for camera calibrations in these experiments. Validation of this technique is achieved by the data collected by a NASA/Earth Observing System satellite and an instrumented aircraft. This paper builds on previous research and details the calibration and 3D reconstructions.
    publisherAmerican Meteorological Society
    titleGeometric Calibration of Digital Cameras for 3D Cumulus Cloud Measurements
    typeJournal Paper
    journal volume26
    journal issue2
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/2008JTECHA1079.1
    journal fristpage200
    journal lastpage214
    treeJournal of Atmospheric and Oceanic Technology:;2009:;volume( 026 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian