YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamics of the Wind-Driven Sea Level Variation around Antarctica

    Source: Journal of Physical Oceanography:;2009:;Volume( 039 ):;issue: 003::page 658
    Author:
    Kusahara, Kazuya
    ,
    Ohshima, Kay I.
    DOI: 10.1175/2008JPO3982.1
    Publisher: American Meteorological Society
    Abstract: Coastal sea level variation around Antarctica is characterized by a coherent (circumpolarly in-phase) fluctuation, correlated with the Antarctic Oscillation (AAO). This study addresses the dynamics of the wind-driven sea level variation around Antarctica. A realistic barotropic numerical model reproduced well the observed sea level around Antarctica. From numerical model experiments, the authors demonstrate that the forcing responsible for the coastal sea level is the wind stress at the coastal boundary. Both the dominant coherent signal and westward propagating signals are identified in the model, and these signals are trapped over the shelf and slope around Antarctica. As a mechanism of these trapped signals, the authors consider analytical solutions of the oceanic response to alongshore wind stress over the shelf and slope in the circumpolar domain. In these solutions, besides the shelf wave mode, a wavenumber-zero mode appears and characterizes the coastal dynamics around Antarctica. At periods from 10 to 200 days, the coherent sea level can be explained quantitatively by the solution of this wavenumber-zero mode with a 5?10-day damping time scale. The spectral peaks of the westward propagating signals can be explained by the resonance of the shelf wave mode. The wavenumber-zero mode can respond to the wavenumber-zero forcing at any frequency and the degree of response increases with decreasing frequency. In addition, the wavenumber-zero component of wind stress, corresponding to the AAO variation, is a dominant forcing. Therefore, the coherent sea level variation around Antarctica is preferably generated and becomes a dominant feature in the circumpolar domain, particularly at lower frequencies.
    • Download: (2.223Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamics of the Wind-Driven Sea Level Variation around Antarctica

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209025
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorKusahara, Kazuya
    contributor authorOhshima, Kay I.
    date accessioned2017-06-09T16:25:19Z
    date available2017-06-09T16:25:19Z
    date copyright2009/03/01
    date issued2009
    identifier issn0022-3670
    identifier otherams-67564.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209025
    description abstractCoastal sea level variation around Antarctica is characterized by a coherent (circumpolarly in-phase) fluctuation, correlated with the Antarctic Oscillation (AAO). This study addresses the dynamics of the wind-driven sea level variation around Antarctica. A realistic barotropic numerical model reproduced well the observed sea level around Antarctica. From numerical model experiments, the authors demonstrate that the forcing responsible for the coastal sea level is the wind stress at the coastal boundary. Both the dominant coherent signal and westward propagating signals are identified in the model, and these signals are trapped over the shelf and slope around Antarctica. As a mechanism of these trapped signals, the authors consider analytical solutions of the oceanic response to alongshore wind stress over the shelf and slope in the circumpolar domain. In these solutions, besides the shelf wave mode, a wavenumber-zero mode appears and characterizes the coastal dynamics around Antarctica. At periods from 10 to 200 days, the coherent sea level can be explained quantitatively by the solution of this wavenumber-zero mode with a 5?10-day damping time scale. The spectral peaks of the westward propagating signals can be explained by the resonance of the shelf wave mode. The wavenumber-zero mode can respond to the wavenumber-zero forcing at any frequency and the degree of response increases with decreasing frequency. In addition, the wavenumber-zero component of wind stress, corresponding to the AAO variation, is a dominant forcing. Therefore, the coherent sea level variation around Antarctica is preferably generated and becomes a dominant feature in the circumpolar domain, particularly at lower frequencies.
    publisherAmerican Meteorological Society
    titleDynamics of the Wind-Driven Sea Level Variation around Antarctica
    typeJournal Paper
    journal volume39
    journal issue3
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2008JPO3982.1
    journal fristpage658
    journal lastpage674
    treeJournal of Physical Oceanography:;2009:;Volume( 039 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian