YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Coastal Wind-Driven Circulation in the Vicinity of a Bank. Part II: Modeling Flow over the Heceta Bank Complex on the Oregon Coast

    Source: Journal of Physical Oceanography:;2009:;Volume( 039 ):;issue: 006::page 1298
    Author:
    Whitney, Michael M.
    ,
    Allen, J. S.
    DOI: 10.1175/2008JPO3967.1
    Publisher: American Meteorological Society
    Abstract: This study investigates wind-driven circulation in the vicinity of the Heceta Bank complex along the Oregon shelf. Numerical experiments forced with steady winds (0.1 Pa) are conducted; upwelling and downwelling cases are compared. The asymmetric bank bathymetry is the only configurational difference from the symmetric bank runs analyzed in Part I (Whitney and Allen). Upwelling-favorable winds generate an upwelling front and southward baroclinic jet. Model results indicate the upwelling jet is centered on the 100-m isobath along the straight shelf. The jet follows this isobath offshore around the northern part of the bank but separates from sharply turning isobaths in the southern half and flows over deeper waters. The jet turns back toward the coast farther downstream. Inshore of the main jet, currents reverse and flow back onto the bank. These reversed currents turn southward again (at the bank center) and join a secondary southward coastal upwelling jet. This secondary coastal jet converges with the stronger main jet farther downstream. Upwelling is intense at the northern bank edge near the coast, where a dense water tongue is advected over the bank. Upwelling also is strong on the southern bank half where the flow turns and reverses. Other areas of the bank have reduced upwelling or even downwelling during upwelling-favorable winds. Downwelling-favorable winds drive a near-bottom density front and a northward jet. The slower downwelling jet flows along the 130-m isobath over the straight shelf. The jet departs from isobaths over the southern bank half and follows a straighter path over shallower waters. There are no reversed currents over the bank. The bank is an area of reduced downwelling. Some of the differences in the evolution of the current and density fields are linked to fundamental differences between the upwelling and downwelling regimes; these are anticipated by the symmetric bank results of Part I. Other differences arise because of the bank asymmetry and opposite flow directions over the bank. The lowest-order depth-averaged across-stream momentum balance remains geostrophic over the bank. Advection, ageostrophic pressure gradients, wind stress, and bottom stress all are important in the depth-averaged alongstream momentum balance over the Heceta Bank complex. Both across-shelf and alongshelf density advection are important. Barotropic potential vorticity is not conserved over the bank, but the tendency for relative vorticity changes and depth changes to partially counter each other influences the different paths of the upwelling and downwelling jets. There are several regions of active upwelling and downwelling over the bank. In these areas, vertical velocities at the top of the bottom boundary layer are linked to topographic upwelling and downwelling and Ekman pumping. There is considerable spatial variability in the currents, densities, and dynamics over the Heceta Bank complex.
    • Download: (6.383Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Coastal Wind-Driven Circulation in the Vicinity of a Bank. Part II: Modeling Flow over the Heceta Bank Complex on the Oregon Coast

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209016
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorWhitney, Michael M.
    contributor authorAllen, J. S.
    date accessioned2017-06-09T16:25:18Z
    date available2017-06-09T16:25:18Z
    date copyright2009/06/01
    date issued2009
    identifier issn0022-3670
    identifier otherams-67556.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209016
    description abstractThis study investigates wind-driven circulation in the vicinity of the Heceta Bank complex along the Oregon shelf. Numerical experiments forced with steady winds (0.1 Pa) are conducted; upwelling and downwelling cases are compared. The asymmetric bank bathymetry is the only configurational difference from the symmetric bank runs analyzed in Part I (Whitney and Allen). Upwelling-favorable winds generate an upwelling front and southward baroclinic jet. Model results indicate the upwelling jet is centered on the 100-m isobath along the straight shelf. The jet follows this isobath offshore around the northern part of the bank but separates from sharply turning isobaths in the southern half and flows over deeper waters. The jet turns back toward the coast farther downstream. Inshore of the main jet, currents reverse and flow back onto the bank. These reversed currents turn southward again (at the bank center) and join a secondary southward coastal upwelling jet. This secondary coastal jet converges with the stronger main jet farther downstream. Upwelling is intense at the northern bank edge near the coast, where a dense water tongue is advected over the bank. Upwelling also is strong on the southern bank half where the flow turns and reverses. Other areas of the bank have reduced upwelling or even downwelling during upwelling-favorable winds. Downwelling-favorable winds drive a near-bottom density front and a northward jet. The slower downwelling jet flows along the 130-m isobath over the straight shelf. The jet departs from isobaths over the southern bank half and follows a straighter path over shallower waters. There are no reversed currents over the bank. The bank is an area of reduced downwelling. Some of the differences in the evolution of the current and density fields are linked to fundamental differences between the upwelling and downwelling regimes; these are anticipated by the symmetric bank results of Part I. Other differences arise because of the bank asymmetry and opposite flow directions over the bank. The lowest-order depth-averaged across-stream momentum balance remains geostrophic over the bank. Advection, ageostrophic pressure gradients, wind stress, and bottom stress all are important in the depth-averaged alongstream momentum balance over the Heceta Bank complex. Both across-shelf and alongshelf density advection are important. Barotropic potential vorticity is not conserved over the bank, but the tendency for relative vorticity changes and depth changes to partially counter each other influences the different paths of the upwelling and downwelling jets. There are several regions of active upwelling and downwelling over the bank. In these areas, vertical velocities at the top of the bottom boundary layer are linked to topographic upwelling and downwelling and Ekman pumping. There is considerable spatial variability in the currents, densities, and dynamics over the Heceta Bank complex.
    publisherAmerican Meteorological Society
    titleCoastal Wind-Driven Circulation in the Vicinity of a Bank. Part II: Modeling Flow over the Heceta Bank Complex on the Oregon Coast
    typeJournal Paper
    journal volume39
    journal issue6
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2008JPO3967.1
    journal fristpage1298
    journal lastpage1316
    treeJournal of Physical Oceanography:;2009:;Volume( 039 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian