YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Turbulent Channel Flows on a Rotating Earth

    Source: Journal of Physical Oceanography:;2009:;Volume( 039 ):;issue: 004::page 952
    Author:
    Handler, Robert A.
    ,
    Mied, Richard P.
    ,
    Lindemann, Gloria J.
    ,
    Evans, Thomas E.
    DOI: 10.1175/2008JPO3938.1
    Publisher: American Meteorological Society
    Abstract: This paper deals with flow in a rectilinear channel on a rotating earth. The flow is directed perpendicular to the background planetary vorticity; both an analytical theory and numerical simulations are employed. The analytical approach assumes the existence of an eddy viscosity and employs a perturbation expansion in powers of the reciprocal of the Rossby number (Ro). At lowest order, a cross-channel circulation arises because of the tilting of the planetary vorticity vector by the shear in the along-channel direction. This circulation causes a surface convergence, which achieves its maximum value at a channel aspect ratio (= width/depth) of approximately 10. The location of the maximum surface convergence moves from near the center of the channel to a position very near the sidewalls as the aspect ratio increases from O(1) to O(100). To include the effects of turbulence, direct numerical pseudospectral simulations of the equations of motion are employed. While holding the friction Reynolds number fixed at 230.27, a series of simulations with increasing rotation (Ro = ∞, 10, 1.0, 0.1) are performed. The channelwide circulation cell observed in the analytical theory occurs for the finite Rossby number, but is displaced by lateral self-advection. In addition, turbulence-driven corner circulations appear, which make the along-channel maximum velocity appear at a subsurface location. The most interesting effect is the segregation of the turbulence to one side of the channel, while the turbulence is suppressed on the opposite side.
    • Download: (1.634Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Turbulent Channel Flows on a Rotating Earth

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208993
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorHandler, Robert A.
    contributor authorMied, Richard P.
    contributor authorLindemann, Gloria J.
    contributor authorEvans, Thomas E.
    date accessioned2017-06-09T16:25:14Z
    date available2017-06-09T16:25:14Z
    date copyright2009/04/01
    date issued2009
    identifier issn0022-3670
    identifier otherams-67535.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208993
    description abstractThis paper deals with flow in a rectilinear channel on a rotating earth. The flow is directed perpendicular to the background planetary vorticity; both an analytical theory and numerical simulations are employed. The analytical approach assumes the existence of an eddy viscosity and employs a perturbation expansion in powers of the reciprocal of the Rossby number (Ro). At lowest order, a cross-channel circulation arises because of the tilting of the planetary vorticity vector by the shear in the along-channel direction. This circulation causes a surface convergence, which achieves its maximum value at a channel aspect ratio (= width/depth) of approximately 10. The location of the maximum surface convergence moves from near the center of the channel to a position very near the sidewalls as the aspect ratio increases from O(1) to O(100). To include the effects of turbulence, direct numerical pseudospectral simulations of the equations of motion are employed. While holding the friction Reynolds number fixed at 230.27, a series of simulations with increasing rotation (Ro = ∞, 10, 1.0, 0.1) are performed. The channelwide circulation cell observed in the analytical theory occurs for the finite Rossby number, but is displaced by lateral self-advection. In addition, turbulence-driven corner circulations appear, which make the along-channel maximum velocity appear at a subsurface location. The most interesting effect is the segregation of the turbulence to one side of the channel, while the turbulence is suppressed on the opposite side.
    publisherAmerican Meteorological Society
    titleTurbulent Channel Flows on a Rotating Earth
    typeJournal Paper
    journal volume39
    journal issue4
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2008JPO3938.1
    journal fristpage952
    journal lastpage968
    treeJournal of Physical Oceanography:;2009:;Volume( 039 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian