YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Abyssal Circulation in the Glacial Atlantic

    Source: Journal of Physical Oceanography:;2008:;Volume( 038 ):;issue: 009::page 2014
    Author:
    Marchal, Olivier
    ,
    Curry, William B.
    DOI: 10.1175/2008JPO3895.1
    Publisher: American Meteorological Society
    Abstract: An inverse method is used to evaluate the information contained in sediment data for the Atlantic basin during the Last Glacial Maximum (defined here as the time interval 18?21 kyr before present). The data being considered are an updated compilation of the isotopic ratios 18O/16O (δ18O) and 13C/12C (δ13C) of fossil shells of benthic foraminifera (bottom-dwelling organisms). First, an estimate of the abyssal circulation in the modern Atlantic is obtained, which is consistent with (i) climatologies of temperature and salinity of the World Ocean Circulation Experiment, (ii) observational estimates of volume transport at specific locations, and (iii) the statements of a finite-difference geostrophic model. Second, estimates of water properties (δ18O of equilibrium calcite or δ18Oc and δ13C of dissolved inorganic carbon or δ13CDIC) derived from sediment data are combined with this circulation estimate to test their consistency with the modern flow. It is found that more than approximately 80% of water property estimates (δ18Oc or δ13CDIC) are compatible with the modern flow given their uncertainties. The consistency of glacial δ13CDIC estimates with the modern flow could be rejected after two assumptions are made: (i) the uncertainty in these estimates is ±0.1? (this uncertainty includes errors in sediment core chronology and oceanic representativity of benthic δ13C, which alone appears better than this value on average); and (ii) δ13CDIC in the glacial deep Atlantic was dominated by a balance between water advection and organic C remineralization. Measurements of δ13C on benthic foraminifera are clearly useful, but the current uncertainties in the distribution and budget of δ13CDIC in the glacial Atlantic must be reduced to increase the power of the test.
    • Download: (2.152Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Abyssal Circulation in the Glacial Atlantic

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208965
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorMarchal, Olivier
    contributor authorCurry, William B.
    date accessioned2017-06-09T16:25:09Z
    date available2017-06-09T16:25:09Z
    date copyright2008/09/01
    date issued2008
    identifier issn0022-3670
    identifier otherams-67510.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208965
    description abstractAn inverse method is used to evaluate the information contained in sediment data for the Atlantic basin during the Last Glacial Maximum (defined here as the time interval 18?21 kyr before present). The data being considered are an updated compilation of the isotopic ratios 18O/16O (δ18O) and 13C/12C (δ13C) of fossil shells of benthic foraminifera (bottom-dwelling organisms). First, an estimate of the abyssal circulation in the modern Atlantic is obtained, which is consistent with (i) climatologies of temperature and salinity of the World Ocean Circulation Experiment, (ii) observational estimates of volume transport at specific locations, and (iii) the statements of a finite-difference geostrophic model. Second, estimates of water properties (δ18O of equilibrium calcite or δ18Oc and δ13C of dissolved inorganic carbon or δ13CDIC) derived from sediment data are combined with this circulation estimate to test their consistency with the modern flow. It is found that more than approximately 80% of water property estimates (δ18Oc or δ13CDIC) are compatible with the modern flow given their uncertainties. The consistency of glacial δ13CDIC estimates with the modern flow could be rejected after two assumptions are made: (i) the uncertainty in these estimates is ±0.1? (this uncertainty includes errors in sediment core chronology and oceanic representativity of benthic δ13C, which alone appears better than this value on average); and (ii) δ13CDIC in the glacial deep Atlantic was dominated by a balance between water advection and organic C remineralization. Measurements of δ13C on benthic foraminifera are clearly useful, but the current uncertainties in the distribution and budget of δ13CDIC in the glacial Atlantic must be reduced to increase the power of the test.
    publisherAmerican Meteorological Society
    titleOn the Abyssal Circulation in the Glacial Atlantic
    typeJournal Paper
    journal volume38
    journal issue9
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2008JPO3895.1
    journal fristpage2014
    journal lastpage2037
    treeJournal of Physical Oceanography:;2008:;Volume( 038 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian