YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Climate Impacts of Making Evapotranspiration in the Community Land Model (CLM3) Consistent with the Simple Biosphere Model (SiB)

    Source: Journal of Hydrometeorology:;2009:;Volume( 010 ):;issue: 002::page 374
    Author:
    Lawrence, Peter J.
    ,
    Chase, Thomas N.
    DOI: 10.1175/2008JHM987.1
    Publisher: American Meteorological Society
    Abstract: In recent climate sensitivity experiments with the Community Climate System Model, version 3 (CCSM3), a wide range of studies have found that the Community Land Model, version 3 (CLM3), simulates mean global evapotranspiration with low contributions from transpiration (15%), and high contributions from soil and canopy evaporation (47% and 38%, respectively). This evapotranspiration partitioning is inconsistent with the consensus of other land surface models used in GCMs. To understand the high soil and canopy evaporation and the low transpiration observed in the CLM3, select individual components of the land surface parameterizations that control transpiration, canopy and soil evaporation, and soil hydrology are compared against the equivalent parameterizations used in the Simple Biosphere Model, versions 2 and 3 (SiB2 and SiB3), and against more recent developments with CLM. The findings of these investigations are used to develop new parameterizations for CLM3 that would reproduce the functional dynamics of land surface processes found in SiB and other alternative land surface parameterizations. Global climate sensitivity experiments are performed with the new land surface parameterizations to assess how the new SiB, consistent CLM land surface parameterizations, influence the surface energy balance, hydrology, and atmospheric fluxes in CLM3, and through that the larger-scale climate modeled in CCSM3. It is found that the new parameterizations enable CLM to simulate evapotranspiration partitioning consistently with the multimodel average of other land surface models used in GCMs, as evaluated by Dirmeyer et al. (2005). The changes in surface fluxes also resulted in a number of improvements in the simulation of precipitation and near-surface air temperature in CCSM3. The new model is fully coupled in the CCSM3 framework, allowing a wide range of climate modeling investigations without the surface hydrology issues found in the current CLM3 model. This provides a substantially more robust framework for performing climate modeling experiments investigating the influence of land cover change and surface hydrology in CLM and CCSM than the existing CLM3 parameterizations. The study also shows that changes in land surface hydrology have global scale impacts on model climatology.
    • Download: (4.047Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Climate Impacts of Making Evapotranspiration in the Community Land Model (CLM3) Consistent with the Simple Biosphere Model (SiB)

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208879
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorLawrence, Peter J.
    contributor authorChase, Thomas N.
    date accessioned2017-06-09T16:24:53Z
    date available2017-06-09T16:24:53Z
    date copyright2009/04/01
    date issued2009
    identifier issn1525-755X
    identifier otherams-67432.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208879
    description abstractIn recent climate sensitivity experiments with the Community Climate System Model, version 3 (CCSM3), a wide range of studies have found that the Community Land Model, version 3 (CLM3), simulates mean global evapotranspiration with low contributions from transpiration (15%), and high contributions from soil and canopy evaporation (47% and 38%, respectively). This evapotranspiration partitioning is inconsistent with the consensus of other land surface models used in GCMs. To understand the high soil and canopy evaporation and the low transpiration observed in the CLM3, select individual components of the land surface parameterizations that control transpiration, canopy and soil evaporation, and soil hydrology are compared against the equivalent parameterizations used in the Simple Biosphere Model, versions 2 and 3 (SiB2 and SiB3), and against more recent developments with CLM. The findings of these investigations are used to develop new parameterizations for CLM3 that would reproduce the functional dynamics of land surface processes found in SiB and other alternative land surface parameterizations. Global climate sensitivity experiments are performed with the new land surface parameterizations to assess how the new SiB, consistent CLM land surface parameterizations, influence the surface energy balance, hydrology, and atmospheric fluxes in CLM3, and through that the larger-scale climate modeled in CCSM3. It is found that the new parameterizations enable CLM to simulate evapotranspiration partitioning consistently with the multimodel average of other land surface models used in GCMs, as evaluated by Dirmeyer et al. (2005). The changes in surface fluxes also resulted in a number of improvements in the simulation of precipitation and near-surface air temperature in CCSM3. The new model is fully coupled in the CCSM3 framework, allowing a wide range of climate modeling investigations without the surface hydrology issues found in the current CLM3 model. This provides a substantially more robust framework for performing climate modeling experiments investigating the influence of land cover change and surface hydrology in CLM and CCSM than the existing CLM3 parameterizations. The study also shows that changes in land surface hydrology have global scale impacts on model climatology.
    publisherAmerican Meteorological Society
    titleClimate Impacts of Making Evapotranspiration in the Community Land Model (CLM3) Consistent with the Simple Biosphere Model (SiB)
    typeJournal Paper
    journal volume10
    journal issue2
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/2008JHM987.1
    journal fristpage374
    journal lastpage394
    treeJournal of Hydrometeorology:;2009:;Volume( 010 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian