YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Use of Bayesian Merging Techniques in a Multimodel Seasonal Hydrologic Ensemble Prediction System for the Eastern United States

    Source: Journal of Hydrometeorology:;2008:;Volume( 009 ):;issue: 005::page 866
    Author:
    Luo, Lifeng
    ,
    Wood, Eric F.
    DOI: 10.1175/2008JHM980.1
    Publisher: American Meteorological Society
    Abstract: Skillful seasonal hydrologic predictions are useful in managing water resources, preparing for droughts and their impacts, energy planning, and many other related sectors. In this study, a seasonal hydrologic ensemble prediction system is developed and evaluated over the eastern United States, with a focus on the Ohio River basin. The system uses a hydrologic model (i.e., the Variable Infiltration Capacity model) as the central element for producing ensemble predictions of soil moisture, snow, and streamflow with lead times up to six months. One unique feature of this system is in the method for generating ensemble atmospheric forcings for the forecast period. It merges seasonal climate forecasts from multiple climate models with observed climatology in a Bayesian framework, such that the uncertainties related to the atmospheric forcings can be better quantified while the signals from individual models are combined. Simultaneously, climate model forecasts are downscaled to an appropriate spatial scale for hydrologic predictions. When generating daily meteorological forcing, the system uses the rank structures of selected historical forcing records to ensure reasonable weather patterns in space and time. Seasonal hydrologic predictions are made with this system, using seasonal climate forecast from the NCEP Climate Forecast System (CFS), and from a combination of the NCEP CFS and seven climate models in the European Union?s Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (CFS+DEMETER). Forecasts of these two types are made for the summer periods (May to October) of 1981?99 and are compared to forecasts produced with the traditional Ensemble Streamflow Prediction (ESP) approach used in operational seasonal streamflow predictions. The forecasts from this system for the summer of 1988 show very promising skill in precipitation, soil moisture, and streamflow over the Ohio River basin, especially the multimodel CFS+DEMETER forecast. The evaluation with all 19 summer forecasts shows that the multimodel CFS+DEMETER forecast is significantly better than the ESP forecast during the first two months of the forecasts. The advantage is marginal to moderate when only the CFS forecast is used. This study validates the approach of using seasonal climate predictions from dynamic climate models in hydrological predictions, and it also emphasizes the need for international collaborations to develop multimodel seasonal predictions.
    • Download: (3.025Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Use of Bayesian Merging Techniques in a Multimodel Seasonal Hydrologic Ensemble Prediction System for the Eastern United States

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208874
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorLuo, Lifeng
    contributor authorWood, Eric F.
    date accessioned2017-06-09T16:24:52Z
    date available2017-06-09T16:24:52Z
    date copyright2008/10/01
    date issued2008
    identifier issn1525-755X
    identifier otherams-67428.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208874
    description abstractSkillful seasonal hydrologic predictions are useful in managing water resources, preparing for droughts and their impacts, energy planning, and many other related sectors. In this study, a seasonal hydrologic ensemble prediction system is developed and evaluated over the eastern United States, with a focus on the Ohio River basin. The system uses a hydrologic model (i.e., the Variable Infiltration Capacity model) as the central element for producing ensemble predictions of soil moisture, snow, and streamflow with lead times up to six months. One unique feature of this system is in the method for generating ensemble atmospheric forcings for the forecast period. It merges seasonal climate forecasts from multiple climate models with observed climatology in a Bayesian framework, such that the uncertainties related to the atmospheric forcings can be better quantified while the signals from individual models are combined. Simultaneously, climate model forecasts are downscaled to an appropriate spatial scale for hydrologic predictions. When generating daily meteorological forcing, the system uses the rank structures of selected historical forcing records to ensure reasonable weather patterns in space and time. Seasonal hydrologic predictions are made with this system, using seasonal climate forecast from the NCEP Climate Forecast System (CFS), and from a combination of the NCEP CFS and seven climate models in the European Union?s Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (CFS+DEMETER). Forecasts of these two types are made for the summer periods (May to October) of 1981?99 and are compared to forecasts produced with the traditional Ensemble Streamflow Prediction (ESP) approach used in operational seasonal streamflow predictions. The forecasts from this system for the summer of 1988 show very promising skill in precipitation, soil moisture, and streamflow over the Ohio River basin, especially the multimodel CFS+DEMETER forecast. The evaluation with all 19 summer forecasts shows that the multimodel CFS+DEMETER forecast is significantly better than the ESP forecast during the first two months of the forecasts. The advantage is marginal to moderate when only the CFS forecast is used. This study validates the approach of using seasonal climate predictions from dynamic climate models in hydrological predictions, and it also emphasizes the need for international collaborations to develop multimodel seasonal predictions.
    publisherAmerican Meteorological Society
    titleUse of Bayesian Merging Techniques in a Multimodel Seasonal Hydrologic Ensemble Prediction System for the Eastern United States
    typeJournal Paper
    journal volume9
    journal issue5
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/2008JHM980.1
    journal fristpage866
    journal lastpage884
    treeJournal of Hydrometeorology:;2008:;Volume( 009 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian