YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Comparison of Soil Moisture Models Using Soil Climate Analysis Network Observations

    Source: Journal of Hydrometeorology:;2008:;Volume( 009 ):;issue: 004::page 641
    Author:
    Meng, Lei
    ,
    Quiring, Steven M.
    DOI: 10.1175/2008JHM916.1
    Publisher: American Meteorological Society
    Abstract: Because of the lack of field measurements, models are often used to monitor soil moisture conditions. Therefore, it is important to find a model that can accurately simulate soil moisture under a variety of land surface conditions. In this paper, three models of varying complexities [the Variable Infiltration Capacity (VIC), Decision Support System for Agrotechnology Transfer (DSSAT), and Climatic Water Budget (CWB) models] that are commonly used for simulating soil moisture were evaluated and compared using soil moisture data (1997?2005) from three Soil Climate Analysis Network (SCAN) sites (Bushland, Texas; Prairie View, Texas; Powder Mill, Maryland). Results demonstrated that DSSAT and VIC simulated soil moisture more accurately than CWB at the three SCAN sites. DSSAT and VIC both accurately simulated the annual cycle of soil moisture and the wetting and drying in response to weather conditions, as evidenced by the relatively strong correlations, but could not accurately simulate the actual soil water content in the upper soil layers (the mean coefficients of efficiency E for all DSSAT and VIC simulations were ?0.8 and ?2.6, respectively). CWB could not accurately simulate soil moisture at any of the SCAN sites. Model performance varied significantly not only from model to model but also from year to year and from location to location. Model sensitivity analysis using the factorial approach suggests that DSSAT is more sensitive than VIC and that model sensitivity varies by locations, indicating that parameter sensitivity is more strongly controlled by climatic gradients than by changes in soil properties.
    • Download: (1.244Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Comparison of Soil Moisture Models Using Soil Climate Analysis Network Observations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208839
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorMeng, Lei
    contributor authorQuiring, Steven M.
    date accessioned2017-06-09T16:24:47Z
    date available2017-06-09T16:24:47Z
    date copyright2008/08/01
    date issued2008
    identifier issn1525-755X
    identifier otherams-67397.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208839
    description abstractBecause of the lack of field measurements, models are often used to monitor soil moisture conditions. Therefore, it is important to find a model that can accurately simulate soil moisture under a variety of land surface conditions. In this paper, three models of varying complexities [the Variable Infiltration Capacity (VIC), Decision Support System for Agrotechnology Transfer (DSSAT), and Climatic Water Budget (CWB) models] that are commonly used for simulating soil moisture were evaluated and compared using soil moisture data (1997?2005) from three Soil Climate Analysis Network (SCAN) sites (Bushland, Texas; Prairie View, Texas; Powder Mill, Maryland). Results demonstrated that DSSAT and VIC simulated soil moisture more accurately than CWB at the three SCAN sites. DSSAT and VIC both accurately simulated the annual cycle of soil moisture and the wetting and drying in response to weather conditions, as evidenced by the relatively strong correlations, but could not accurately simulate the actual soil water content in the upper soil layers (the mean coefficients of efficiency E for all DSSAT and VIC simulations were ?0.8 and ?2.6, respectively). CWB could not accurately simulate soil moisture at any of the SCAN sites. Model performance varied significantly not only from model to model but also from year to year and from location to location. Model sensitivity analysis using the factorial approach suggests that DSSAT is more sensitive than VIC and that model sensitivity varies by locations, indicating that parameter sensitivity is more strongly controlled by climatic gradients than by changes in soil properties.
    publisherAmerican Meteorological Society
    titleA Comparison of Soil Moisture Models Using Soil Climate Analysis Network Observations
    typeJournal Paper
    journal volume9
    journal issue4
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/2008JHM916.1
    journal fristpage641
    journal lastpage659
    treeJournal of Hydrometeorology:;2008:;Volume( 009 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian