YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Intercomparison and Validation of High-Resolution Satellite Precipitation Estimates with 3-Hourly Gauge Data

    Source: Journal of Hydrometeorology:;2009:;Volume( 010 ):;issue: 001::page 149
    Author:
    Sapiano, M. R. P.
    ,
    Arkin, P. A.
    DOI: 10.1175/2008JHM1052.1
    Publisher: American Meteorological Society
    Abstract: The last several years have seen the development of a number of new satellite-derived, globally complete, high-resolution precipitation products with a spatial resolution of at least 0.25° and a temporal resolution of at least 3-hourly. These products generally merge geostationary infrared data and polar-orbiting passive microwave data to take advantage of the frequent sampling of the infrared and the superior quality of the microwave. The Program to Evaluate High Resolution Precipitation Products (PEHRPP) was established to evaluate and intercompare these datasets at a variety of spatial and temporal resolutions with the intent of guiding dataset developers and informing the user community regarding the error characteristics of the products. As part of this project, the authors have performed a subdaily intercomparison of five high-resolution datasets [Climate Prediction Center morphing (CMORPH) technique; Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis (TMPA); Naval Research Laboratory (NRL) blended technique; National Environmental Satellite, Data, and Information Service Hydro-Estimator; and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN)] with existing subdaily gauge data over the United States and the Pacific Ocean. Results show that these data are effective at representing high-resolution precipitation, with correlations against 3-hourly gauge data as high as 0.7 for CMORPH, which had the highest correlations with the validation data. Biases are relatively high for most of the datasets over land (apart from the TMPA, which is gauge adjusted) and ocean, with a general tendency to overestimate warm season rainfall over the United States and to underestimate rainfall over the tropical Pacific Ocean. Additionally, all the products studied faithfully resolve the diurnal cycle of precipitation when compared with the validation data.
    • Download: (4.444Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Intercomparison and Validation of High-Resolution Satellite Precipitation Estimates with 3-Hourly Gauge Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208804
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorSapiano, M. R. P.
    contributor authorArkin, P. A.
    date accessioned2017-06-09T16:24:40Z
    date available2017-06-09T16:24:40Z
    date copyright2009/02/01
    date issued2009
    identifier issn1525-755X
    identifier otherams-67365.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208804
    description abstractThe last several years have seen the development of a number of new satellite-derived, globally complete, high-resolution precipitation products with a spatial resolution of at least 0.25° and a temporal resolution of at least 3-hourly. These products generally merge geostationary infrared data and polar-orbiting passive microwave data to take advantage of the frequent sampling of the infrared and the superior quality of the microwave. The Program to Evaluate High Resolution Precipitation Products (PEHRPP) was established to evaluate and intercompare these datasets at a variety of spatial and temporal resolutions with the intent of guiding dataset developers and informing the user community regarding the error characteristics of the products. As part of this project, the authors have performed a subdaily intercomparison of five high-resolution datasets [Climate Prediction Center morphing (CMORPH) technique; Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis (TMPA); Naval Research Laboratory (NRL) blended technique; National Environmental Satellite, Data, and Information Service Hydro-Estimator; and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN)] with existing subdaily gauge data over the United States and the Pacific Ocean. Results show that these data are effective at representing high-resolution precipitation, with correlations against 3-hourly gauge data as high as 0.7 for CMORPH, which had the highest correlations with the validation data. Biases are relatively high for most of the datasets over land (apart from the TMPA, which is gauge adjusted) and ocean, with a general tendency to overestimate warm season rainfall over the United States and to underestimate rainfall over the tropical Pacific Ocean. Additionally, all the products studied faithfully resolve the diurnal cycle of precipitation when compared with the validation data.
    publisherAmerican Meteorological Society
    titleAn Intercomparison and Validation of High-Resolution Satellite Precipitation Estimates with 3-Hourly Gauge Data
    typeJournal Paper
    journal volume10
    journal issue1
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/2008JHM1052.1
    journal fristpage149
    journal lastpage166
    treeJournal of Hydrometeorology:;2009:;Volume( 010 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian