YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Variations in the Three-Dimensional Structure of the Atmospheric Circulation with Different Flavors of El Niño

    Source: Journal of Climate:;2009:;volume( 022 ):;issue: 011::page 2978
    Author:
    Trenberth, Kevin E.
    ,
    Smith, Lesley
    DOI: 10.1175/2008JCLI2691.1
    Publisher: American Meteorological Society
    Abstract: Two rather different flavors of El Niño are revealed when the full three-dimensional spatial structure of the temperature field and atmospheric circulation monthly mean anomalies is analyzed using the Japanese Reanalysis (JRA-25) temperatures from 1979 through 2004 for a core region of the tropics from 30°N to 30°S, with results projected globally onto various other fields. The first two empirical orthogonal functions (EOFs) both have primary relationships to El Niño?Southern Oscillation (ENSO) but feature rather different vertical and spatial structures. By construction the two patterns are orthogonal, but their signatures in sea level pressure, precipitation, outgoing longwave radiation (OLR), and tropospheric diabatic heating are quite similar. Moreover, they are significantly related, with EOF-2 leading EOF-1 by about 4?6 months, indicating that they play complementary roles in the evolution of ENSO events, and with each mode playing greater or lesser roles in different events and seasons. The dominant pattern (EOF-1) in its positive sign features highly coherent zonal mean warming throughout the tropical troposphere from 30°N to 30°S that increases in magnitude with height to 200 hPa, drops to zero about 100 hPa at the tropopause, and has reverse sign to 30 hPa with peak values at 70 hPa. It correlates strongly with global mean surface temperatures. EOF-2 emphasizes off-equatorial centers of action and strong Rossby wave temperature signatures that are coherent throughout the troposphere, with the strongest values in the Pacific that extend into the extratropics and a sign reversal at and above 150 hPa. Near the surface, both patterns feature boomerang-shaped opposite temperatures in the western tropical and subtropical Pacific, with similar sea level pressure patterns, but with EOF-1 more focused in equatorial regions. Both patterns are strongest during the boreal winter half-year when anomalous precipitation in the tropics and associated latent heating drive teleconnections throughout the world. For El Niño in northern winter EOF-1 has more precipitation in the eastern tropical Pacific, while EOF-2 has much drier conditions over northern Australia and the Indian Ocean. In northern summer, the main differences are in the South Pacific and Indian Ocean. Differences in teleconnections suggest great sensitivity to small changes in forcings in association with seasonal variations in the mean state.
    • Download: (10.69Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Variations in the Three-Dimensional Structure of the Atmospheric Circulation with Different Flavors of El Niño

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208741
    Collections
    • Journal of Climate

    Show full item record

    contributor authorTrenberth, Kevin E.
    contributor authorSmith, Lesley
    date accessioned2017-06-09T16:24:30Z
    date available2017-06-09T16:24:30Z
    date copyright2009/06/01
    date issued2009
    identifier issn0894-8755
    identifier otherams-67308.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208741
    description abstractTwo rather different flavors of El Niño are revealed when the full three-dimensional spatial structure of the temperature field and atmospheric circulation monthly mean anomalies is analyzed using the Japanese Reanalysis (JRA-25) temperatures from 1979 through 2004 for a core region of the tropics from 30°N to 30°S, with results projected globally onto various other fields. The first two empirical orthogonal functions (EOFs) both have primary relationships to El Niño?Southern Oscillation (ENSO) but feature rather different vertical and spatial structures. By construction the two patterns are orthogonal, but their signatures in sea level pressure, precipitation, outgoing longwave radiation (OLR), and tropospheric diabatic heating are quite similar. Moreover, they are significantly related, with EOF-2 leading EOF-1 by about 4?6 months, indicating that they play complementary roles in the evolution of ENSO events, and with each mode playing greater or lesser roles in different events and seasons. The dominant pattern (EOF-1) in its positive sign features highly coherent zonal mean warming throughout the tropical troposphere from 30°N to 30°S that increases in magnitude with height to 200 hPa, drops to zero about 100 hPa at the tropopause, and has reverse sign to 30 hPa with peak values at 70 hPa. It correlates strongly with global mean surface temperatures. EOF-2 emphasizes off-equatorial centers of action and strong Rossby wave temperature signatures that are coherent throughout the troposphere, with the strongest values in the Pacific that extend into the extratropics and a sign reversal at and above 150 hPa. Near the surface, both patterns feature boomerang-shaped opposite temperatures in the western tropical and subtropical Pacific, with similar sea level pressure patterns, but with EOF-1 more focused in equatorial regions. Both patterns are strongest during the boreal winter half-year when anomalous precipitation in the tropics and associated latent heating drive teleconnections throughout the world. For El Niño in northern winter EOF-1 has more precipitation in the eastern tropical Pacific, while EOF-2 has much drier conditions over northern Australia and the Indian Ocean. In northern summer, the main differences are in the South Pacific and Indian Ocean. Differences in teleconnections suggest great sensitivity to small changes in forcings in association with seasonal variations in the mean state.
    publisherAmerican Meteorological Society
    titleVariations in the Three-Dimensional Structure of the Atmospheric Circulation with Different Flavors of El Niño
    typeJournal Paper
    journal volume22
    journal issue11
    journal titleJournal of Climate
    identifier doi10.1175/2008JCLI2691.1
    journal fristpage2978
    journal lastpage2991
    treeJournal of Climate:;2009:;volume( 022 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian