YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulations of Hydrographic Properties in the Northwestern North Atlantic Ocean in Coupled Climate Models

    Source: Journal of Climate:;2009:;volume( 022 ):;issue: 007::page 1767
    Author:
    de Jong, M. F.
    ,
    Drijfhout, S. S.
    ,
    Hazeleger, W.
    ,
    van Aken, H. M.
    ,
    Severijns, C. A.
    DOI: 10.1175/2008JCLI2448.1
    Publisher: American Meteorological Society
    Abstract: The performance of coupled climate models (CCMs) in simulating the hydrographic structure and variability of the northwestern North Atlantic Ocean, in particular the Labrador and Irminger Seas, has been assessed. This area plays an important role in the meridional overturning circulation. Hydrographic properties of the preindustrial run of eight CCMs used in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) are compared with observations from the World Ocean Circulation Experiment Repeat section 7 (WOCE AR7). The mean and standard deviation of 20 yr of simulated data are compared in three layers, representing the surface waters, intermediate waters, and deep waters. Two models simulate an extremely cold, fresh surface layer with model biases down to ?1.7 psu and ?4.0°C, much larger than the observed ranges of variability. The intermediate and deep layers are generally too warm and saline, with biases up to 0.7 psu and 2.8°C. An analysis of the maximum mixed layer depth shows that the low surface salinity is related to a convective regime restricted to the upper 500 dbar. Thus, intermediate water formed by convection is partly replaced by warmer water from the south. Model biases seem to be caused by the coupling to the atmospheric component of the CCM. Model drift during long spinup periods allows the initially small biases in water mass characteristics to become significant. Biases that develop in the control run are carried over to the twentieth-century runs, which are initialized from the control runs.
    • Download: (2.241Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulations of Hydrographic Properties in the Northwestern North Atlantic Ocean in Coupled Climate Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208625
    Collections
    • Journal of Climate

    Show full item record

    contributor authorde Jong, M. F.
    contributor authorDrijfhout, S. S.
    contributor authorHazeleger, W.
    contributor authorvan Aken, H. M.
    contributor authorSeverijns, C. A.
    date accessioned2017-06-09T16:24:06Z
    date available2017-06-09T16:24:06Z
    date copyright2009/04/01
    date issued2009
    identifier issn0894-8755
    identifier otherams-67203.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208625
    description abstractThe performance of coupled climate models (CCMs) in simulating the hydrographic structure and variability of the northwestern North Atlantic Ocean, in particular the Labrador and Irminger Seas, has been assessed. This area plays an important role in the meridional overturning circulation. Hydrographic properties of the preindustrial run of eight CCMs used in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) are compared with observations from the World Ocean Circulation Experiment Repeat section 7 (WOCE AR7). The mean and standard deviation of 20 yr of simulated data are compared in three layers, representing the surface waters, intermediate waters, and deep waters. Two models simulate an extremely cold, fresh surface layer with model biases down to ?1.7 psu and ?4.0°C, much larger than the observed ranges of variability. The intermediate and deep layers are generally too warm and saline, with biases up to 0.7 psu and 2.8°C. An analysis of the maximum mixed layer depth shows that the low surface salinity is related to a convective regime restricted to the upper 500 dbar. Thus, intermediate water formed by convection is partly replaced by warmer water from the south. Model biases seem to be caused by the coupling to the atmospheric component of the CCM. Model drift during long spinup periods allows the initially small biases in water mass characteristics to become significant. Biases that develop in the control run are carried over to the twentieth-century runs, which are initialized from the control runs.
    publisherAmerican Meteorological Society
    titleSimulations of Hydrographic Properties in the Northwestern North Atlantic Ocean in Coupled Climate Models
    typeJournal Paper
    journal volume22
    journal issue7
    journal titleJournal of Climate
    identifier doi10.1175/2008JCLI2448.1
    journal fristpage1767
    journal lastpage1786
    treeJournal of Climate:;2009:;volume( 022 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian