YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Synoptic Wave Perturbations and Convective Systems over Equatorial Africa

    Source: Journal of Climate:;2008:;volume( 021 ):;issue: 023::page 6372
    Author:
    Nguyen, Hanh
    ,
    Duvel, Jean-Philippe
    DOI: 10.1175/2008JCLI2409.1
    Publisher: American Meteorological Society
    Abstract: Spectral analysis of the outgoing longwave radiation (OLR) time series over equatorial Africa reveals large oscillations of the convection with periods of between 3 and 6 days. In March and April, when the intertropical convergence zone (ITCZ) migrates northward and crosses equatorial Africa, this periodic behavior is most pronounced with a marked peak at 5?6 days. Robust horizontal and vertical patterns, consistent with a convectively coupled Kelvin wave, can be extracted by a simple composite technique based only on the phase of the convective oscillations over equatorial Africa. The composite reveals differences between continental and adjacent oceanic regions. Over the continent, the stronger oscillation of the convection is associated with larger temperature and moisture anomalies near the surface, suggesting an influence of diabatic processes on the amplitude of the perturbations. Some convective events over equatorial Africa are triggered by waves propagating eastward over the equatorial Atlantic. However, this cannot explain the robust periodic behavior observed over equatorial Africa because the convective variability over the Amazon basin and the equatorial Atlantic have different spectral characteristics with no marked peak at 5?6 days in March and April. The mesoscale convective systems embedded in these synoptic disturbances are studied using satellite brightness temperature at higher spatial (0.5°) and temporal (3 h) resolution than the OLR (respectively, 2.5° and daily average). The diurnal and the wave modulations of occurrence, size, and life cycle of the mesoscale convective systems are inspected. These systems are generated preferentially over the western slopes of the Rift Valley highlands. They propagate west-southwestward over the Congo basin where they reach their maximum size. The 5?6-day perturbations do not modify the diurnal triggering of convective systems notably, but the perturbations do modify their development into larger organized convection, especially over the Congo basin. The implication of these results for understanding the physical source of these 5?6-day perturbations is discussed.
    • Download: (3.134Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Synoptic Wave Perturbations and Convective Systems over Equatorial Africa

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208603
    Collections
    • Journal of Climate

    Show full item record

    contributor authorNguyen, Hanh
    contributor authorDuvel, Jean-Philippe
    date accessioned2017-06-09T16:24:02Z
    date available2017-06-09T16:24:02Z
    date copyright2008/12/01
    date issued2008
    identifier issn0894-8755
    identifier otherams-67184.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208603
    description abstractSpectral analysis of the outgoing longwave radiation (OLR) time series over equatorial Africa reveals large oscillations of the convection with periods of between 3 and 6 days. In March and April, when the intertropical convergence zone (ITCZ) migrates northward and crosses equatorial Africa, this periodic behavior is most pronounced with a marked peak at 5?6 days. Robust horizontal and vertical patterns, consistent with a convectively coupled Kelvin wave, can be extracted by a simple composite technique based only on the phase of the convective oscillations over equatorial Africa. The composite reveals differences between continental and adjacent oceanic regions. Over the continent, the stronger oscillation of the convection is associated with larger temperature and moisture anomalies near the surface, suggesting an influence of diabatic processes on the amplitude of the perturbations. Some convective events over equatorial Africa are triggered by waves propagating eastward over the equatorial Atlantic. However, this cannot explain the robust periodic behavior observed over equatorial Africa because the convective variability over the Amazon basin and the equatorial Atlantic have different spectral characteristics with no marked peak at 5?6 days in March and April. The mesoscale convective systems embedded in these synoptic disturbances are studied using satellite brightness temperature at higher spatial (0.5°) and temporal (3 h) resolution than the OLR (respectively, 2.5° and daily average). The diurnal and the wave modulations of occurrence, size, and life cycle of the mesoscale convective systems are inspected. These systems are generated preferentially over the western slopes of the Rift Valley highlands. They propagate west-southwestward over the Congo basin where they reach their maximum size. The 5?6-day perturbations do not modify the diurnal triggering of convective systems notably, but the perturbations do modify their development into larger organized convection, especially over the Congo basin. The implication of these results for understanding the physical source of these 5?6-day perturbations is discussed.
    publisherAmerican Meteorological Society
    titleSynoptic Wave Perturbations and Convective Systems over Equatorial Africa
    typeJournal Paper
    journal volume21
    journal issue23
    journal titleJournal of Climate
    identifier doi10.1175/2008JCLI2409.1
    journal fristpage6372
    journal lastpage6388
    treeJournal of Climate:;2008:;volume( 021 ):;issue: 023
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian