YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Role of Ekman Ocean Heat Transport in the Northern Hemisphere Response to ENSO

    Source: Journal of Climate:;2008:;volume( 021 ):;issue: 021::page 5688
    Author:
    Alexander, Michael A.
    ,
    Scott, James D.
    DOI: 10.1175/2008JCLI2382.1
    Publisher: American Meteorological Society
    Abstract: The influence of oceanic Ekman heat transport (Qek) on air?sea variability associated with ENSO teleconnections is examined via a pair of atmospheric general circulation model (AGCM) experiments. In the mixed layer model (MLM) experiment, observed sea surface temperatures (SSTs) for the years 1950?99 are specified over the tropical Pacific, while a grid of mixed layer models is coupled to the AGCM elsewhere over the global oceans. The same experimental design was used in the Ekman transport/mixed layer model (EKM) experiment with the addition of Qek in the mixed layer ocean temperature equation. The ENSO signal was evaluated using differences between composites of El Niño and La Niña events averaged over the 16 ensemble members in each experiment. In both experiments the Aleutian low deepened and the resulting surface heat fluxes cooled the central North Pacific and warmed the northeast Pacific during boreal winter in El Niño relative to La Niña events. Including Qek amplified the ENSO-related SSTs by ?? in the central and northeast North Pacific, producing anomalies comparable to those in nature. Differences between the ENSO-induced atmospheric circulation anomalies in the EKM and MLM experiments were not significant over the North Pacific. The sea level pressure (SLP) and SST response to ENSO over the Atlantic strongly projects on the North Atlantic Oscillation (NAO) and the SST tripole pattern in observations and both model experiments. The La Niña anomalies, which are stronger than during El Niño, include high pressure and positive SSTs in the central North Atlantic. Including Ekman transport enhanced the Atlantic SST anomalies, which in contrast to the Pacific, appeared to strengthen the overlying atmospheric circulation.
    • Download: (6.071Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Role of Ekman Ocean Heat Transport in the Northern Hemisphere Response to ENSO

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208590
    Collections
    • Journal of Climate

    Show full item record

    contributor authorAlexander, Michael A.
    contributor authorScott, James D.
    date accessioned2017-06-09T16:24:00Z
    date available2017-06-09T16:24:00Z
    date copyright2008/11/01
    date issued2008
    identifier issn0894-8755
    identifier otherams-67172.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208590
    description abstractThe influence of oceanic Ekman heat transport (Qek) on air?sea variability associated with ENSO teleconnections is examined via a pair of atmospheric general circulation model (AGCM) experiments. In the mixed layer model (MLM) experiment, observed sea surface temperatures (SSTs) for the years 1950?99 are specified over the tropical Pacific, while a grid of mixed layer models is coupled to the AGCM elsewhere over the global oceans. The same experimental design was used in the Ekman transport/mixed layer model (EKM) experiment with the addition of Qek in the mixed layer ocean temperature equation. The ENSO signal was evaluated using differences between composites of El Niño and La Niña events averaged over the 16 ensemble members in each experiment. In both experiments the Aleutian low deepened and the resulting surface heat fluxes cooled the central North Pacific and warmed the northeast Pacific during boreal winter in El Niño relative to La Niña events. Including Qek amplified the ENSO-related SSTs by ?? in the central and northeast North Pacific, producing anomalies comparable to those in nature. Differences between the ENSO-induced atmospheric circulation anomalies in the EKM and MLM experiments were not significant over the North Pacific. The sea level pressure (SLP) and SST response to ENSO over the Atlantic strongly projects on the North Atlantic Oscillation (NAO) and the SST tripole pattern in observations and both model experiments. The La Niña anomalies, which are stronger than during El Niño, include high pressure and positive SSTs in the central North Atlantic. Including Ekman transport enhanced the Atlantic SST anomalies, which in contrast to the Pacific, appeared to strengthen the overlying atmospheric circulation.
    publisherAmerican Meteorological Society
    titleThe Role of Ekman Ocean Heat Transport in the Northern Hemisphere Response to ENSO
    typeJournal Paper
    journal volume21
    journal issue21
    journal titleJournal of Climate
    identifier doi10.1175/2008JCLI2382.1
    journal fristpage5688
    journal lastpage5707
    treeJournal of Climate:;2008:;volume( 021 ):;issue: 021
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian