YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Arctic Climate Change as Manifest in Cyclone Behavior

    Source: Journal of Climate:;2008:;volume( 021 ):;issue: 022::page 5777
    Author:
    Simmonds, Ian
    ,
    Burke, Craig
    ,
    Keay, Kevin
    DOI: 10.1175/2008JCLI2366.1
    Publisher: American Meteorological Society
    Abstract: The Arctic region has exhibited dramatic changes in recent times. Many of these are intimately tied up with synoptic activity, but little research has been undertaken on how the characteristics of Arctic cyclones have changed. This paper presents a comprehensive analysis of Arctic (here defined as the domain north of 70°N) cyclones diagnosed with the Melbourne University cyclone tracking scheme applied to the 40-yr ECMWF Re-Analysis (ERA-40) and the NCEP?NCAR (NCEP1) and NCEP?Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP)-II (NCEP2) reanalysis sets (the last two extending to the end of 2006). A wide variety of cyclone characteristics is presented as befits these complex features. In winter the highest density of cyclones is found between Norway and Svalbard and to the east to the Barents and Kara Seas, and significant numbers are found in the central Arctic. In summer the greatest frequencies are found in the central Arctic. The total number of cyclones identified in the ERA-40 record exceeds those in the two NCEP compilations. The mean size of cyclones shows similar maxima in the central Arctic in both winter and summer. By contrast, the greatest mean system depth in winter (in excess of 8 hPa) is found to the southeast of Greenland, although average depths exceed 6 hPa over a considerable portion of the basin. In summer the deepest cyclones are found in the central portion of the Arctic. The analysis shows that the total number of cyclones in winter exceeds that in summer, a result in contrast to earlier studies. This difference comes about primarily due to the greater numbers of ?open strong? systems in winter in all reanalyses. Cyclones in this category are associated with very active synoptic situations; it is of importance that they be included in cyclone counts but would not be considered in many cyclone identification schemes. Since 1979 neither the ERA-40 nor the NCEP2 sets show significant trends in any of the cyclone variables considered. However, over the entire record starting in 1958 the NCEP1 reanalysis exhibits a significant increase in summer cyclone frequency (due mainly to the increase in closed strong systems). Both NCEP1 and ERA-40 also reveal significant increases in the number of summer closed strong cyclones, as well as in their mean depth and intensity in that season. Interannual variations in Arctic cyclone numbers are closely related to the Arctic Oscillation (AO) index in the full reanalyses records. An even stronger relationship is found between the AO and the number of deep cyclones. These relationships have still held in the last decade when the AO has returned to more normal values but the summer and fall sea ice extent has continued to decrease.
    • Download: (2.696Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Arctic Climate Change as Manifest in Cyclone Behavior

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208581
    Collections
    • Journal of Climate

    Show full item record

    contributor authorSimmonds, Ian
    contributor authorBurke, Craig
    contributor authorKeay, Kevin
    date accessioned2017-06-09T16:23:58Z
    date available2017-06-09T16:23:58Z
    date copyright2008/11/01
    date issued2008
    identifier issn0894-8755
    identifier otherams-67164.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208581
    description abstractThe Arctic region has exhibited dramatic changes in recent times. Many of these are intimately tied up with synoptic activity, but little research has been undertaken on how the characteristics of Arctic cyclones have changed. This paper presents a comprehensive analysis of Arctic (here defined as the domain north of 70°N) cyclones diagnosed with the Melbourne University cyclone tracking scheme applied to the 40-yr ECMWF Re-Analysis (ERA-40) and the NCEP?NCAR (NCEP1) and NCEP?Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP)-II (NCEP2) reanalysis sets (the last two extending to the end of 2006). A wide variety of cyclone characteristics is presented as befits these complex features. In winter the highest density of cyclones is found between Norway and Svalbard and to the east to the Barents and Kara Seas, and significant numbers are found in the central Arctic. In summer the greatest frequencies are found in the central Arctic. The total number of cyclones identified in the ERA-40 record exceeds those in the two NCEP compilations. The mean size of cyclones shows similar maxima in the central Arctic in both winter and summer. By contrast, the greatest mean system depth in winter (in excess of 8 hPa) is found to the southeast of Greenland, although average depths exceed 6 hPa over a considerable portion of the basin. In summer the deepest cyclones are found in the central portion of the Arctic. The analysis shows that the total number of cyclones in winter exceeds that in summer, a result in contrast to earlier studies. This difference comes about primarily due to the greater numbers of ?open strong? systems in winter in all reanalyses. Cyclones in this category are associated with very active synoptic situations; it is of importance that they be included in cyclone counts but would not be considered in many cyclone identification schemes. Since 1979 neither the ERA-40 nor the NCEP2 sets show significant trends in any of the cyclone variables considered. However, over the entire record starting in 1958 the NCEP1 reanalysis exhibits a significant increase in summer cyclone frequency (due mainly to the increase in closed strong systems). Both NCEP1 and ERA-40 also reveal significant increases in the number of summer closed strong cyclones, as well as in their mean depth and intensity in that season. Interannual variations in Arctic cyclone numbers are closely related to the Arctic Oscillation (AO) index in the full reanalyses records. An even stronger relationship is found between the AO and the number of deep cyclones. These relationships have still held in the last decade when the AO has returned to more normal values but the summer and fall sea ice extent has continued to decrease.
    publisherAmerican Meteorological Society
    titleArctic Climate Change as Manifest in Cyclone Behavior
    typeJournal Paper
    journal volume21
    journal issue22
    journal titleJournal of Climate
    identifier doi10.1175/2008JCLI2366.1
    journal fristpage5777
    journal lastpage5796
    treeJournal of Climate:;2008:;volume( 021 ):;issue: 022
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian