YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Phase Speed Spectra and the Latitude of Surface Westerlies: Interannual Variability and Global Warming Trend

    Source: Journal of Climate:;2008:;volume( 021 ):;issue: 022::page 5942
    Author:
    Chen, Gang
    ,
    Lu, Jian
    ,
    Frierson, Dargan M. W.
    DOI: 10.1175/2008JCLI2306.1
    Publisher: American Meteorological Society
    Abstract: The extratropical annular-mode-like atmospheric responses to ENSO and global warming and the internal variability of annular modes are associated with similar, yet distinct, dynamical characteristics. In particular, La Niña, global warming, and the positive phase of annular modes are all associated with a poleward shift of midlatitude jet streams and surface westerlies. To improve understanding of these phenomena, the authors identify and compare patterns of interannual variability and global warming trends in the midlatitude surface westerlies and the space?time spectra of associated eddy momentum fluxes by analyzing simulations of the present climate in an atmosphere-only climate model, in which the ENSO-induced extratropical response is validated with that in reanalysis data, and by projection of future climate changes using a coupled atmosphere?ocean model. While the response to ENSO is consistent with the refraction of midlatitude eddies due to subtropical wind anomalies, the interannual internal variability of the annular modes marks a change in the eastward propagation speed of midlatitude eddies. In response to global warming, the dominant eddies exhibit a trend toward faster eddy phase speeds in both hemispheres, in a manner similar to the positive phase of interannual internal variability. These diagnoses suggest that the annular mode trend due to greenhouse gas increases may be more related to extratropical processes, especially in the upper troposphere/lower stratosphere, rather than being forced from the deep tropics.
    • Download: (3.142Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Phase Speed Spectra and the Latitude of Surface Westerlies: Interannual Variability and Global Warming Trend

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208542
    Collections
    • Journal of Climate

    Show full item record

    contributor authorChen, Gang
    contributor authorLu, Jian
    contributor authorFrierson, Dargan M. W.
    date accessioned2017-06-09T16:23:51Z
    date available2017-06-09T16:23:51Z
    date copyright2008/11/01
    date issued2008
    identifier issn0894-8755
    identifier otherams-67129.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208542
    description abstractThe extratropical annular-mode-like atmospheric responses to ENSO and global warming and the internal variability of annular modes are associated with similar, yet distinct, dynamical characteristics. In particular, La Niña, global warming, and the positive phase of annular modes are all associated with a poleward shift of midlatitude jet streams and surface westerlies. To improve understanding of these phenomena, the authors identify and compare patterns of interannual variability and global warming trends in the midlatitude surface westerlies and the space?time spectra of associated eddy momentum fluxes by analyzing simulations of the present climate in an atmosphere-only climate model, in which the ENSO-induced extratropical response is validated with that in reanalysis data, and by projection of future climate changes using a coupled atmosphere?ocean model. While the response to ENSO is consistent with the refraction of midlatitude eddies due to subtropical wind anomalies, the interannual internal variability of the annular modes marks a change in the eastward propagation speed of midlatitude eddies. In response to global warming, the dominant eddies exhibit a trend toward faster eddy phase speeds in both hemispheres, in a manner similar to the positive phase of interannual internal variability. These diagnoses suggest that the annular mode trend due to greenhouse gas increases may be more related to extratropical processes, especially in the upper troposphere/lower stratosphere, rather than being forced from the deep tropics.
    publisherAmerican Meteorological Society
    titlePhase Speed Spectra and the Latitude of Surface Westerlies: Interannual Variability and Global Warming Trend
    typeJournal Paper
    journal volume21
    journal issue22
    journal titleJournal of Climate
    identifier doi10.1175/2008JCLI2306.1
    journal fristpage5942
    journal lastpage5959
    treeJournal of Climate:;2008:;volume( 021 ):;issue: 022
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian