YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influences of Atlantic Climate Change on the Tropical Pacific via the Central American Isthmus

    Source: Journal of Climate:;2008:;volume( 021 ):;issue: 015::page 3914
    Author:
    Xie, Shang-Ping
    ,
    Okumura, Yuko
    ,
    Miyama, Toru
    ,
    Timmermann, Axel
    DOI: 10.1175/2008JCLI2231.1
    Publisher: American Meteorological Society
    Abstract: Recent global coupled model experiments suggest that the atmospheric bridge across Central America is a key conduit for Atlantic climate change to affect the tropical Pacific. A high-resolution regional ocean?atmosphere model (ROAM) of the eastern tropical Pacific is used to investigate key processes of this conduit by examining the response to a sea surface temperature (SST) cooling over the North Atlantic. The Atlantic cooling increases sea level pressure, driving northeasterly wind anomalies across the Isthmus of Panama year-round. While the atmospheric response is most pronounced during boreal summer/fall when the tropical North Atlantic is warm and conducive to deep convection, the Pacific SST response is strongest in winter/spring when the climatological northeast trade winds prevail across the isthmus. During winter, the northeasterly cross-isthmus winds intensify in response to the Atlantic cooling, reducing the SST in the Gulf of Panama by cold and dry advection from the Atlantic and by enhancing surface turbulent heat flux and mixing. This Gulf of Panama cooling reaches the equator and is amplified by the Bjerknes feedback during boreal spring. The equatorial anomalies of SST and zonal winds dissipate quickly in early summer as the seasonal development of the cold tongue increases the stratification of the atmospheric boundary layer and shields the surface from the Atlantic influence that propagates into the Pacific as tropospheric Rossby waves. The climatological winds over the far eastern Pacific warm pool turn southwesterly in summer/fall, superimposed on which the anomalous northesterlies induce a weak SST warming there. The ROAM results are compared with global model water-hosing runs to shed light on intermodel consistency and differences in response to the shutdown of the Atlantic meridional overturning circulation. Implications for interpreting paleoclimate changes such as Heinrich events are discussed. The results presented here also aid in understanding phenomena in the present climate such as the Central American midsummer drought and Atlantic multidecadal oscillation.
    • Download: (2.039Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influences of Atlantic Climate Change on the Tropical Pacific via the Central American Isthmus

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208485
    Collections
    • Journal of Climate

    Show full item record

    contributor authorXie, Shang-Ping
    contributor authorOkumura, Yuko
    contributor authorMiyama, Toru
    contributor authorTimmermann, Axel
    date accessioned2017-06-09T16:23:40Z
    date available2017-06-09T16:23:40Z
    date copyright2008/08/01
    date issued2008
    identifier issn0894-8755
    identifier otherams-67078.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208485
    description abstractRecent global coupled model experiments suggest that the atmospheric bridge across Central America is a key conduit for Atlantic climate change to affect the tropical Pacific. A high-resolution regional ocean?atmosphere model (ROAM) of the eastern tropical Pacific is used to investigate key processes of this conduit by examining the response to a sea surface temperature (SST) cooling over the North Atlantic. The Atlantic cooling increases sea level pressure, driving northeasterly wind anomalies across the Isthmus of Panama year-round. While the atmospheric response is most pronounced during boreal summer/fall when the tropical North Atlantic is warm and conducive to deep convection, the Pacific SST response is strongest in winter/spring when the climatological northeast trade winds prevail across the isthmus. During winter, the northeasterly cross-isthmus winds intensify in response to the Atlantic cooling, reducing the SST in the Gulf of Panama by cold and dry advection from the Atlantic and by enhancing surface turbulent heat flux and mixing. This Gulf of Panama cooling reaches the equator and is amplified by the Bjerknes feedback during boreal spring. The equatorial anomalies of SST and zonal winds dissipate quickly in early summer as the seasonal development of the cold tongue increases the stratification of the atmospheric boundary layer and shields the surface from the Atlantic influence that propagates into the Pacific as tropospheric Rossby waves. The climatological winds over the far eastern Pacific warm pool turn southwesterly in summer/fall, superimposed on which the anomalous northesterlies induce a weak SST warming there. The ROAM results are compared with global model water-hosing runs to shed light on intermodel consistency and differences in response to the shutdown of the Atlantic meridional overturning circulation. Implications for interpreting paleoclimate changes such as Heinrich events are discussed. The results presented here also aid in understanding phenomena in the present climate such as the Central American midsummer drought and Atlantic multidecadal oscillation.
    publisherAmerican Meteorological Society
    titleInfluences of Atlantic Climate Change on the Tropical Pacific via the Central American Isthmus
    typeJournal Paper
    journal volume21
    journal issue15
    journal titleJournal of Climate
    identifier doi10.1175/2008JCLI2231.1
    journal fristpage3914
    journal lastpage3928
    treeJournal of Climate:;2008:;volume( 021 ):;issue: 015
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian