YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Boreal Summer Intraseasonal Variability in Coupled Seasonal Hindcasts

    Source: Journal of Climate:;2008:;volume( 021 ):;issue: 017::page 4477
    Author:
    Xavier, Prince K.
    ,
    Duvel, Jean-Philippe
    ,
    Doblas-Reyes, Francisco J.
    DOI: 10.1175/2008JCLI2216.1
    Publisher: American Meteorological Society
    Abstract: The intraseasonal variability (ISV) of the Asian summer monsoon represented in seven coupled general circulation models (CGCMs) as part of the Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) project is analyzed and evaluated against observations. The focus is on the spatial and seasonal variations of ISV of outgoing longwave radiation (OLR). The large-scale organization of convection, the propagation characteristics, and the air?sea coupling related to the monsoon ISV are also evaluated. A multivariate local mode analysis (LMA) reveals that most models produce less organized convection and ISV events of shorter duration than observed. Compared to the real atmosphere, these simulated patterns of perturbations are poorly reproducible from one event to the other. Most models simulate too weak sea surface temperature (SST) perturbations and systematic phase quadrature between OLR, surface winds, and SST?indicative of a slab-ocean-like response of the SST to surface flux perturbations. The relatively coarse vertical resolution of the different ocean GCMs (OGCMs) limits their ability to represent intraseasonal processes, such as diurnal warm layer formation, which are important for realistic simulation of the SST perturbations at intraseasonal time scales. Models with the same atmospheric GCM (AGCM) and different OGCMs tend to have similar biases of the simulated ISV, indicating the dominant role of atmospheric models in fixing the nature of the intraseasonal variability. It is, therefore, implied that improvements in the representation of ISV in coupled models have to fundamentally arise from fixing problems in the large-scale organization of convection in AGCMs.
    • Download: (4.259Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Boreal Summer Intraseasonal Variability in Coupled Seasonal Hindcasts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208473
    Collections
    • Journal of Climate

    Show full item record

    contributor authorXavier, Prince K.
    contributor authorDuvel, Jean-Philippe
    contributor authorDoblas-Reyes, Francisco J.
    date accessioned2017-06-09T16:23:39Z
    date available2017-06-09T16:23:39Z
    date copyright2008/09/01
    date issued2008
    identifier issn0894-8755
    identifier otherams-67067.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208473
    description abstractThe intraseasonal variability (ISV) of the Asian summer monsoon represented in seven coupled general circulation models (CGCMs) as part of the Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) project is analyzed and evaluated against observations. The focus is on the spatial and seasonal variations of ISV of outgoing longwave radiation (OLR). The large-scale organization of convection, the propagation characteristics, and the air?sea coupling related to the monsoon ISV are also evaluated. A multivariate local mode analysis (LMA) reveals that most models produce less organized convection and ISV events of shorter duration than observed. Compared to the real atmosphere, these simulated patterns of perturbations are poorly reproducible from one event to the other. Most models simulate too weak sea surface temperature (SST) perturbations and systematic phase quadrature between OLR, surface winds, and SST?indicative of a slab-ocean-like response of the SST to surface flux perturbations. The relatively coarse vertical resolution of the different ocean GCMs (OGCMs) limits their ability to represent intraseasonal processes, such as diurnal warm layer formation, which are important for realistic simulation of the SST perturbations at intraseasonal time scales. Models with the same atmospheric GCM (AGCM) and different OGCMs tend to have similar biases of the simulated ISV, indicating the dominant role of atmospheric models in fixing the nature of the intraseasonal variability. It is, therefore, implied that improvements in the representation of ISV in coupled models have to fundamentally arise from fixing problems in the large-scale organization of convection in AGCMs.
    publisherAmerican Meteorological Society
    titleBoreal Summer Intraseasonal Variability in Coupled Seasonal Hindcasts
    typeJournal Paper
    journal volume21
    journal issue17
    journal titleJournal of Climate
    identifier doi10.1175/2008JCLI2216.1
    journal fristpage4477
    journal lastpage4497
    treeJournal of Climate:;2008:;volume( 021 ):;issue: 017
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian