YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Contribution of Atmospheric Circulation to Inception of the Laurentide Ice Sheet at 116 kyr BP

    Source: Journal of Climate:;2009:;volume( 022 ):;issue: 001::page 39
    Author:
    Otieno, Francis O.
    ,
    Bromwich, David H.
    DOI: 10.1175/2008JCLI2211.1
    Publisher: American Meteorological Society
    Abstract: The role of atmospheric circulations, yielding extremely cold summer and wet winter seasons, in the development of perennial snow cover over the inception region of the Laurentide Ice Sheet is investigated using the Community Land Model, version 3 (CLM3) with bias-corrected 40-yr ECMWF Re-Analysis (ERA-40) idealized atmospheric forcing. Potential contribution of changes in frequency of these extremes under contemporary and Eemian (116 kyr BP) conditions is also examined by adjusting the atmospheric forcing. The results confirm that colder atmospheric temperatures during the melt season are more important than extreme amounts of winter snowfall. Increases in frequency of extremely cold and persistent summer air temperatures in the contemporary climate do not produce perennial snow. An additional cooling of 4°C together with adjustments for Eemian incident radiation is required for perennial snow to start growing around Hudson Bay. Deeper snow is found over the Labrador?Ungava area, close to the North Atlantic Ocean moisture sources, compared to the Keewatin area. These areas are in agreement with the locations of the Laurentide Ice Sheet domes found from free gravity analysis. Starting from the warm present-day atmosphere a 25% decrease in summer insolation is required for CLM3 to develop perennial snow. This suggests that cooling resulting from modest decreases in local insolation in response to Milankovitch radiation forcing was insufficient for inception at 116 kyr BP. Remote cooling or local feedbacks that amplify the impact of the modest insolation reductions are required. A large-scale atmospheric cooling appears to have played a decisive role in inception.
    • Download: (2.268Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Contribution of Atmospheric Circulation to Inception of the Laurentide Ice Sheet at 116 kyr BP

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208470
    Collections
    • Journal of Climate

    Show full item record

    contributor authorOtieno, Francis O.
    contributor authorBromwich, David H.
    date accessioned2017-06-09T16:23:38Z
    date available2017-06-09T16:23:38Z
    date copyright2009/01/01
    date issued2009
    identifier issn0894-8755
    identifier otherams-67064.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208470
    description abstractThe role of atmospheric circulations, yielding extremely cold summer and wet winter seasons, in the development of perennial snow cover over the inception region of the Laurentide Ice Sheet is investigated using the Community Land Model, version 3 (CLM3) with bias-corrected 40-yr ECMWF Re-Analysis (ERA-40) idealized atmospheric forcing. Potential contribution of changes in frequency of these extremes under contemporary and Eemian (116 kyr BP) conditions is also examined by adjusting the atmospheric forcing. The results confirm that colder atmospheric temperatures during the melt season are more important than extreme amounts of winter snowfall. Increases in frequency of extremely cold and persistent summer air temperatures in the contemporary climate do not produce perennial snow. An additional cooling of 4°C together with adjustments for Eemian incident radiation is required for perennial snow to start growing around Hudson Bay. Deeper snow is found over the Labrador?Ungava area, close to the North Atlantic Ocean moisture sources, compared to the Keewatin area. These areas are in agreement with the locations of the Laurentide Ice Sheet domes found from free gravity analysis. Starting from the warm present-day atmosphere a 25% decrease in summer insolation is required for CLM3 to develop perennial snow. This suggests that cooling resulting from modest decreases in local insolation in response to Milankovitch radiation forcing was insufficient for inception at 116 kyr BP. Remote cooling or local feedbacks that amplify the impact of the modest insolation reductions are required. A large-scale atmospheric cooling appears to have played a decisive role in inception.
    publisherAmerican Meteorological Society
    titleContribution of Atmospheric Circulation to Inception of the Laurentide Ice Sheet at 116 kyr BP
    typeJournal Paper
    journal volume22
    journal issue1
    journal titleJournal of Climate
    identifier doi10.1175/2008JCLI2211.1
    journal fristpage39
    journal lastpage57
    treeJournal of Climate:;2009:;volume( 022 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian