YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Spatiotemporal Variation of the Vertical Gradient of Rainfall Rate Observed by the TRMM Precipitation Radar

    Source: Journal of Climate:;2004:;volume( 017 ):;issue: 017::page 3378
    Author:
    Hirose, Masafumi
    ,
    Nakamura, Kenji
    DOI: 10.1175/1520-0442(2004)017<3378:SVOTVG>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Seasonal and spatial variation of the vertical gradient of rainfall rate was investigated using global precipitation data observed by the Precipitation Radar (PR) on the Tropical Rainfall Measuring Mission (TRMM) satellite. The vertical gradient was rendered by features of downward decreasing (DD) or downward increasing (DI) rainfall rate in the lower part of the profile. The DD profiles dominated tropical interior landmasses such as Africa and the Brazilian Plateau in summer. The DI profiles were observed over land in winter and over ocean except for regions with very little rainfall. In addition, DI profiles appeared during the height of the wet season even over the tropical landmasses, such as the mature monsoon period over inland India and over the Amazon River basin. Individual precipitation systems were also investigated in terms of their areally averaged DD and DI characteristics mainly over India. Deep (shallow) profiles tended to be DD (DI) for all seasons except the premonsoon season. As the rain area increased, the vertical gradient of rainfall rate decreased (DD tendency). Embedded in the dominant DD signature for deep storms, deep but significant DI profiles were observed in every month. They characterized the precipitation in the premonsoon season. More than half of the mesoscale/ synoptic-scale systems (rain areas >104 km2) having the significant DD or DI regions had both of them as part of their slant cores. The vertical gradients for these systems had a similar trend for both their stratiform and convective parts. During the mature period of the southwest monsoon, the number of small systems that were DI and widespread systems with moderate vertical gradient increased.
    • Download: (1.898Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Spatiotemporal Variation of the Vertical Gradient of Rainfall Rate Observed by the TRMM Precipitation Radar

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208423
    Collections
    • Journal of Climate

    Show full item record

    contributor authorHirose, Masafumi
    contributor authorNakamura, Kenji
    date accessioned2017-06-09T16:23:30Z
    date available2017-06-09T16:23:30Z
    date copyright2004/09/01
    date issued2004
    identifier issn0894-8755
    identifier otherams-6702.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208423
    description abstractSeasonal and spatial variation of the vertical gradient of rainfall rate was investigated using global precipitation data observed by the Precipitation Radar (PR) on the Tropical Rainfall Measuring Mission (TRMM) satellite. The vertical gradient was rendered by features of downward decreasing (DD) or downward increasing (DI) rainfall rate in the lower part of the profile. The DD profiles dominated tropical interior landmasses such as Africa and the Brazilian Plateau in summer. The DI profiles were observed over land in winter and over ocean except for regions with very little rainfall. In addition, DI profiles appeared during the height of the wet season even over the tropical landmasses, such as the mature monsoon period over inland India and over the Amazon River basin. Individual precipitation systems were also investigated in terms of their areally averaged DD and DI characteristics mainly over India. Deep (shallow) profiles tended to be DD (DI) for all seasons except the premonsoon season. As the rain area increased, the vertical gradient of rainfall rate decreased (DD tendency). Embedded in the dominant DD signature for deep storms, deep but significant DI profiles were observed in every month. They characterized the precipitation in the premonsoon season. More than half of the mesoscale/ synoptic-scale systems (rain areas >104 km2) having the significant DD or DI regions had both of them as part of their slant cores. The vertical gradients for these systems had a similar trend for both their stratiform and convective parts. During the mature period of the southwest monsoon, the number of small systems that were DI and widespread systems with moderate vertical gradient increased.
    publisherAmerican Meteorological Society
    titleSpatiotemporal Variation of the Vertical Gradient of Rainfall Rate Observed by the TRMM Precipitation Radar
    typeJournal Paper
    journal volume17
    journal issue17
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2004)017<3378:SVOTVG>2.0.CO;2
    journal fristpage3378
    journal lastpage3397
    treeJournal of Climate:;2004:;volume( 017 ):;issue: 017
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian