YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improved Forecasts of the Diurnal Cycle in the Tropics Using Multiple Global Models. Part II: Asian Summer Monsoon

    Source: Journal of Climate:;2008:;volume( 021 ):;issue: 016::page 4045
    Author:
    Chakraborty, Arindam
    ,
    Krishnamurti, T. N.
    DOI: 10.1175/2008JCLI2107.1
    Publisher: American Meteorological Society
    Abstract: The diurnal mode of the Asian summer monsoon during active and break periods is studied using four versions of the Florida State University (FSU) global spectral model (GSM). These versions differ in the formulation of cloud parameterization schemes in the model. Observational-based estimates show that there exists a divergent circulation at 200 hPa over the Asian monsoon region in the diurnal time scale that peaks at 1200 local solar time (LST) during break monsoon and at 1800 LST during active monsoon. A circulation in the opposite direction is seen near the surface. This circulation loop is completed by vertical ascending/descending motion over the monsoon domain and its surroundings. This study shows that global models have large phase and amplitude errors for the 200-hPa velocity potential and vertical pressure velocity over the monsoon region and its surroundings. Construction of a multimodel superensemble could reduce these errors substantially out to five days in advance. This was on account of assigning differential weights to the member models based on their past performance. This study also uses a unified cloud parameterization scheme that inherits the idea of a multimodel superensemble for combining member model forecasts. The advantage of this model is that it is an integrated part of the GSM and thus can improve the forecasts of other parameters as well through improved cloud cover. It was seen that this scheme had a larger impact on forecasting the diurnal cycle of cloud cover and precipitation of the Asian summer monsoon compared to circulation. The authors show that the diurnal circulation contributes to about 10% of the rate of change of total kinetic energy of the monsoon. Therefore, forecasting this pronounced diurnal mode has important implications for the energetics of the Asian summer monsoon.
    • Download: (4.558Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improved Forecasts of the Diurnal Cycle in the Tropics Using Multiple Global Models. Part II: Asian Summer Monsoon

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208408
    Collections
    • Journal of Climate

    Show full item record

    contributor authorChakraborty, Arindam
    contributor authorKrishnamurti, T. N.
    date accessioned2017-06-09T16:23:28Z
    date available2017-06-09T16:23:28Z
    date copyright2008/08/01
    date issued2008
    identifier issn0894-8755
    identifier otherams-67008.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208408
    description abstractThe diurnal mode of the Asian summer monsoon during active and break periods is studied using four versions of the Florida State University (FSU) global spectral model (GSM). These versions differ in the formulation of cloud parameterization schemes in the model. Observational-based estimates show that there exists a divergent circulation at 200 hPa over the Asian monsoon region in the diurnal time scale that peaks at 1200 local solar time (LST) during break monsoon and at 1800 LST during active monsoon. A circulation in the opposite direction is seen near the surface. This circulation loop is completed by vertical ascending/descending motion over the monsoon domain and its surroundings. This study shows that global models have large phase and amplitude errors for the 200-hPa velocity potential and vertical pressure velocity over the monsoon region and its surroundings. Construction of a multimodel superensemble could reduce these errors substantially out to five days in advance. This was on account of assigning differential weights to the member models based on their past performance. This study also uses a unified cloud parameterization scheme that inherits the idea of a multimodel superensemble for combining member model forecasts. The advantage of this model is that it is an integrated part of the GSM and thus can improve the forecasts of other parameters as well through improved cloud cover. It was seen that this scheme had a larger impact on forecasting the diurnal cycle of cloud cover and precipitation of the Asian summer monsoon compared to circulation. The authors show that the diurnal circulation contributes to about 10% of the rate of change of total kinetic energy of the monsoon. Therefore, forecasting this pronounced diurnal mode has important implications for the energetics of the Asian summer monsoon.
    publisherAmerican Meteorological Society
    titleImproved Forecasts of the Diurnal Cycle in the Tropics Using Multiple Global Models. Part II: Asian Summer Monsoon
    typeJournal Paper
    journal volume21
    journal issue16
    journal titleJournal of Climate
    identifier doi10.1175/2008JCLI2107.1
    journal fristpage4045
    journal lastpage4067
    treeJournal of Climate:;2008:;volume( 021 ):;issue: 016
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian