YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulated Variability of the Circulation in the North Atlantic from 1953 to 2003

    Source: Journal of Climate:;2008:;volume( 021 ):;issue: 019::page 4919
    Author:
    Deshayes, Julie
    ,
    Frankignoul, Claude
    DOI: 10.1175/2008JCLI1882.1
    Publisher: American Meteorological Society
    Abstract: The variability of the circulation in the North Atlantic and its link with atmospheric variability are investigated in a realistic hindcast simulation from 1953 to 2003. The interannual-to-decadal variability of the subpolar gyre circulation and the Meridional Overturning Circulation (MOC) is mostly influenced by the North Atlantic Oscillation (NAO). Both circulations intensified from the early 1970s to the mid-1990s and then decreased. The monthly variability of both circulations reflects the fast barotropic adjustment to NAO-related Ekman pumping anomalies, while the interannual-to-decadal variability is due to the baroclinic adjustment to Ekman pumping, buoyancy forcing, and dense water formation, consistent with previous studies. An original characteristic of the oceanic response to NAO is presented that relates to the spatial patterns of buoyancy and wind forcing over the North Atlantic. Anomalous Ekman pumping associated with a positive NAO phase first induces a decrease of the southern subpolar gyre strength and an intensification of the northern subpolar gyre. The latter is reinforced by buoyancy loss and dense water formation in the Irminger Sea, where the cyclonic circulation increases 1?2 yr after the positive NAO phase. Increased buoyancy loss also occurs in the Labrador Sea, but because of the early decrease of the southern subpolar gyre strength, the intensification of the cyclonic circulation is delayed. Hence the subpolar gyre and the MOC start increasing in the Irminger Sea, while in the Labrador Sea the circulation at depth leads its surface counterpart. In this simulation where the transport of dense water through the North Atlantic sills is underestimated, the MOC variability is well represented by a simple integrator of convection in the Irminger Sea, which fits better than a direct integration of NAO forcing.
    • Download: (2.668Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulated Variability of the Circulation in the North Atlantic from 1953 to 2003

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208353
    Collections
    • Journal of Climate

    Show full item record

    contributor authorDeshayes, Julie
    contributor authorFrankignoul, Claude
    date accessioned2017-06-09T16:23:18Z
    date available2017-06-09T16:23:18Z
    date copyright2008/10/01
    date issued2008
    identifier issn0894-8755
    identifier otherams-66960.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208353
    description abstractThe variability of the circulation in the North Atlantic and its link with atmospheric variability are investigated in a realistic hindcast simulation from 1953 to 2003. The interannual-to-decadal variability of the subpolar gyre circulation and the Meridional Overturning Circulation (MOC) is mostly influenced by the North Atlantic Oscillation (NAO). Both circulations intensified from the early 1970s to the mid-1990s and then decreased. The monthly variability of both circulations reflects the fast barotropic adjustment to NAO-related Ekman pumping anomalies, while the interannual-to-decadal variability is due to the baroclinic adjustment to Ekman pumping, buoyancy forcing, and dense water formation, consistent with previous studies. An original characteristic of the oceanic response to NAO is presented that relates to the spatial patterns of buoyancy and wind forcing over the North Atlantic. Anomalous Ekman pumping associated with a positive NAO phase first induces a decrease of the southern subpolar gyre strength and an intensification of the northern subpolar gyre. The latter is reinforced by buoyancy loss and dense water formation in the Irminger Sea, where the cyclonic circulation increases 1?2 yr after the positive NAO phase. Increased buoyancy loss also occurs in the Labrador Sea, but because of the early decrease of the southern subpolar gyre strength, the intensification of the cyclonic circulation is delayed. Hence the subpolar gyre and the MOC start increasing in the Irminger Sea, while in the Labrador Sea the circulation at depth leads its surface counterpart. In this simulation where the transport of dense water through the North Atlantic sills is underestimated, the MOC variability is well represented by a simple integrator of convection in the Irminger Sea, which fits better than a direct integration of NAO forcing.
    publisherAmerican Meteorological Society
    titleSimulated Variability of the Circulation in the North Atlantic from 1953 to 2003
    typeJournal Paper
    journal volume21
    journal issue19
    journal titleJournal of Climate
    identifier doi10.1175/2008JCLI1882.1
    journal fristpage4919
    journal lastpage4933
    treeJournal of Climate:;2008:;volume( 021 ):;issue: 019
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian