YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Constraints on Model Response to Greenhouse Gas Forcing and the Role of Subgrid-Scale Processes

    Source: Journal of Climate:;2008:;volume( 021 ):;issue: 011::page 2384
    Author:
    Sanderson, Benjamin M.
    ,
    Knutti, R.
    ,
    Aina, T.
    ,
    Christensen, C.
    ,
    Faull, N.
    ,
    Frame, D. J.
    ,
    Ingram, W. J.
    ,
    Piani, C.
    ,
    Stainforth, D. A.
    ,
    Stone, D. A.
    ,
    Allen, M. R.
    DOI: 10.1175/2008JCLI1869.1
    Publisher: American Meteorological Society
    Abstract: A climate model emulator is developed using neural network techniques and trained with the data from the multithousand-member climateprediction.net perturbed physics GCM ensemble. The method recreates nonlinear interactions between model parameters, allowing a simulation of a much larger ensemble that explores model parameter space more fully. The emulated ensemble is used to search for models closest to observations over a wide range of equilibrium response to greenhouse gas forcing. The relative discrepancies of these models from observations could be used to provide a constraint on climate sensitivity. The use of annual mean or seasonal differences on top-of-atmosphere radiative fluxes as an observational error metric results in the most clearly defined minimum in error as a function of sensitivity, with consistent but less well-defined results when using the seasonal cycles of surface temperature or total precipitation. The model parameter changes necessary to achieve different values of climate sensitivity while minimizing discrepancy from observation are also considered and compared with previous studies. This information is used to propose more efficient parameter sampling strategies for future ensembles.
    • Download: (1.651Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Constraints on Model Response to Greenhouse Gas Forcing and the Role of Subgrid-Scale Processes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208350
    Collections
    • Journal of Climate

    Show full item record

    contributor authorSanderson, Benjamin M.
    contributor authorKnutti, R.
    contributor authorAina, T.
    contributor authorChristensen, C.
    contributor authorFaull, N.
    contributor authorFrame, D. J.
    contributor authorIngram, W. J.
    contributor authorPiani, C.
    contributor authorStainforth, D. A.
    contributor authorStone, D. A.
    contributor authorAllen, M. R.
    date accessioned2017-06-09T16:23:18Z
    date available2017-06-09T16:23:18Z
    date copyright2008/06/01
    date issued2008
    identifier issn0894-8755
    identifier otherams-66957.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208350
    description abstractA climate model emulator is developed using neural network techniques and trained with the data from the multithousand-member climateprediction.net perturbed physics GCM ensemble. The method recreates nonlinear interactions between model parameters, allowing a simulation of a much larger ensemble that explores model parameter space more fully. The emulated ensemble is used to search for models closest to observations over a wide range of equilibrium response to greenhouse gas forcing. The relative discrepancies of these models from observations could be used to provide a constraint on climate sensitivity. The use of annual mean or seasonal differences on top-of-atmosphere radiative fluxes as an observational error metric results in the most clearly defined minimum in error as a function of sensitivity, with consistent but less well-defined results when using the seasonal cycles of surface temperature or total precipitation. The model parameter changes necessary to achieve different values of climate sensitivity while minimizing discrepancy from observation are also considered and compared with previous studies. This information is used to propose more efficient parameter sampling strategies for future ensembles.
    publisherAmerican Meteorological Society
    titleConstraints on Model Response to Greenhouse Gas Forcing and the Role of Subgrid-Scale Processes
    typeJournal Paper
    journal volume21
    journal issue11
    journal titleJournal of Climate
    identifier doi10.1175/2008JCLI1869.1
    journal fristpage2384
    journal lastpage2400
    treeJournal of Climate:;2008:;volume( 021 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian