YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Regionalization of Climate Change Simulations over the Eastern Mediterranean

    Source: Journal of Climate:;2009:;volume( 022 ):;issue: 008::page 1944
    Author:
    Önol, Bariş
    ,
    H. M. Semazzi, Fredrick
    DOI: 10.1175/2008JCLI1807.1
    Publisher: American Meteorological Society
    Abstract: In this study, the potential role of global warming in modulating the future climate over the eastern Mediterranean (EM) region has been investigated. The primary vehicle of this investigation is the Abdus Salam International Centre for Theoretical Physics Regional Climate Model version 3 (ICTP-RegCM3), which was used to downscale the present and future climate scenario simulations generated by the NASA?s finite-volume GCM (fvGCM). The present-day (1961?90; RF) simulations and the future climate change projections (2071?2100; A2) are based on the Intergovernmental Panel on Climate Change (IPCC) greenhouse gas (GHG) emissions. During the Northern Hemispheric winter season, the general increase in precipitation over the northern sector of the EM region is present both in the fvGCM and RegCM3 model simulations. The regional model simulations reveal a significant increase (10%?50%) in winter precipitation over the Carpathian Mountains and along the east coast of the Black Sea, over the Kackar Mountains, and over the Caucasus Mountains. The large decrease in precipitation over the southeastern Turkey region that recharges the Euphrates and Tigris River basins could become a major source of concern for the countries downstream of this region. The model results also indicate that the autumn rains, which are primarily confined over Turkey for the current climate, will expand into Syria and Iraq in the future, which is consistent with the corresponding changes in the circulation pattern. The climate change over EM tends to manifest itself in terms of the modulation of North Atlantic Oscillation. During summer, temperature increase is as large as 7°C over the Balkan countries while changes for the rest of the region are in the range of 3°?4°C. Overall the temperature increase in summer is much greater than the corresponding changes during winter. Presentation of the climate change projections in terms of individual country averages is highly advantageous for the practical interpretation of the results. The consistence of the country averages for the RF RegCM3 projections with the corresponding averaged station data is compelling evidence of the added value of regional climate model downscaling.
    • Download: (9.001Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Regionalization of Climate Change Simulations over the Eastern Mediterranean

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208347
    Collections
    • Journal of Climate

    Show full item record

    contributor authorÖnol, Bariş
    contributor authorH. M. Semazzi, Fredrick
    date accessioned2017-06-09T16:23:17Z
    date available2017-06-09T16:23:17Z
    date copyright2009/04/01
    date issued2009
    identifier issn0894-8755
    identifier otherams-66954.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208347
    description abstractIn this study, the potential role of global warming in modulating the future climate over the eastern Mediterranean (EM) region has been investigated. The primary vehicle of this investigation is the Abdus Salam International Centre for Theoretical Physics Regional Climate Model version 3 (ICTP-RegCM3), which was used to downscale the present and future climate scenario simulations generated by the NASA?s finite-volume GCM (fvGCM). The present-day (1961?90; RF) simulations and the future climate change projections (2071?2100; A2) are based on the Intergovernmental Panel on Climate Change (IPCC) greenhouse gas (GHG) emissions. During the Northern Hemispheric winter season, the general increase in precipitation over the northern sector of the EM region is present both in the fvGCM and RegCM3 model simulations. The regional model simulations reveal a significant increase (10%?50%) in winter precipitation over the Carpathian Mountains and along the east coast of the Black Sea, over the Kackar Mountains, and over the Caucasus Mountains. The large decrease in precipitation over the southeastern Turkey region that recharges the Euphrates and Tigris River basins could become a major source of concern for the countries downstream of this region. The model results also indicate that the autumn rains, which are primarily confined over Turkey for the current climate, will expand into Syria and Iraq in the future, which is consistent with the corresponding changes in the circulation pattern. The climate change over EM tends to manifest itself in terms of the modulation of North Atlantic Oscillation. During summer, temperature increase is as large as 7°C over the Balkan countries while changes for the rest of the region are in the range of 3°?4°C. Overall the temperature increase in summer is much greater than the corresponding changes during winter. Presentation of the climate change projections in terms of individual country averages is highly advantageous for the practical interpretation of the results. The consistence of the country averages for the RF RegCM3 projections with the corresponding averaged station data is compelling evidence of the added value of regional climate model downscaling.
    publisherAmerican Meteorological Society
    titleRegionalization of Climate Change Simulations over the Eastern Mediterranean
    typeJournal Paper
    journal volume22
    journal issue8
    journal titleJournal of Climate
    identifier doi10.1175/2008JCLI1807.1
    journal fristpage1944
    journal lastpage1961
    treeJournal of Climate:;2009:;volume( 022 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian