YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Theoretical Studies of Convectively Forced Mesoscale Flows in Three Dimensions. Part I: Uniform Basic-State Flow

    Source: Journal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 004::page 947
    Author:
    Han, Ji-Young
    ,
    Baik, Jong-Jin
    DOI: 10.1175/2008JAS2915.1
    Publisher: American Meteorological Society
    Abstract: Convectively forced mesoscale flows in three dimensions are theoretically investigated by examining the transient response of a stably stratified atmosphere to convective heating. Solutions for the equations governing small-amplitude perturbations in a uniform basic-state wind with specified convective heating are analytically obtained using the Green function method. In the surface pulse heating case, it is explicitly shown that the vertical displacement at the center of the 3D steady heating decreases as fast as t?1 for large t. Hence, unlike in two dimensions, the steady state is approached in three dimensions. In the finite-depth steady heating case, the perturbation vertical velocity field in the stationary mode shows a main updraft region extending over the heating layer and V-shaped upward and downward motions above and below the heating layer. Including the third dimension results in a stronger updraft at an early stage, a weaker compensating downward motion, and a weaker stationary gravity wave field in a quasi-steady state than in the case of two dimensions. An examination of flow response fields for various vertical structures of convective heating indicates that stationary gravity waves above the main updraft region become strong in intensity as the height of the maximum convective heating increases. In response to the transient heating, a main updraft region extending over the heating layer no longer appears at a dissipation stage of deep convection. Instead, alternating regions of upward and downward motion with an upstream phase tilt appear.
    • Download: (1.471Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Theoretical Studies of Convectively Forced Mesoscale Flows in Three Dimensions. Part I: Uniform Basic-State Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208323
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHan, Ji-Young
    contributor authorBaik, Jong-Jin
    date accessioned2017-06-09T16:23:10Z
    date available2017-06-09T16:23:10Z
    date copyright2009/04/01
    date issued2009
    identifier issn0022-4928
    identifier otherams-66932.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208323
    description abstractConvectively forced mesoscale flows in three dimensions are theoretically investigated by examining the transient response of a stably stratified atmosphere to convective heating. Solutions for the equations governing small-amplitude perturbations in a uniform basic-state wind with specified convective heating are analytically obtained using the Green function method. In the surface pulse heating case, it is explicitly shown that the vertical displacement at the center of the 3D steady heating decreases as fast as t?1 for large t. Hence, unlike in two dimensions, the steady state is approached in three dimensions. In the finite-depth steady heating case, the perturbation vertical velocity field in the stationary mode shows a main updraft region extending over the heating layer and V-shaped upward and downward motions above and below the heating layer. Including the third dimension results in a stronger updraft at an early stage, a weaker compensating downward motion, and a weaker stationary gravity wave field in a quasi-steady state than in the case of two dimensions. An examination of flow response fields for various vertical structures of convective heating indicates that stationary gravity waves above the main updraft region become strong in intensity as the height of the maximum convective heating increases. In response to the transient heating, a main updraft region extending over the heating layer no longer appears at a dissipation stage of deep convection. Instead, alternating regions of upward and downward motion with an upstream phase tilt appear.
    publisherAmerican Meteorological Society
    titleTheoretical Studies of Convectively Forced Mesoscale Flows in Three Dimensions. Part I: Uniform Basic-State Flow
    typeJournal Paper
    journal volume66
    journal issue4
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2008JAS2915.1
    journal fristpage947
    journal lastpage965
    treeJournal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian