YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Genesis of Tropical Storm Eugene (2005) from Merging Vortices Associated with ITCZ Breakdowns. Part II: Roles of Vortex Merger and Ambient Potential Vorticity

    Source: Journal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 007::page 1980
    Author:
    Kieu, Chanh Q.
    ,
    Zhang, Da-Lin
    DOI: 10.1175/2008JAS2905.1
    Publisher: American Meteorological Society
    Abstract: In this study, the roles of merging midlevel mesoscale convective vortices (MCVs) and convectively generated potential vorticity (PV) patches embedded in the intertropical convergence zone (ITCZ) in determining tropical cyclogenesis are examined by calculating PV and absolute vorticity budgets with a cloud-resolving simulation of Tropical Storm Eugene (2005). Results show that the vortex merger occurs as the gradual capture of small-scale PV patches within a slow-drifting MCV by another fast-moving MCV, thus concentrating high PV near the merger?s circulation center, with its peak amplitude located slightly above the melting level. The merging phase is characterized by sharp increases in surface heat fluxes, low-level convergence, latent heat release (and upward motion), lower tropospheric PV, surface pressure falls, and growth of cyclonic vorticity from the bottom upward. Melting and freezing appear to affect markedly the vertical structures of diabatic heating, convergence, absolute vorticity, and PV, as well the production of PV during the life cycle of Eugene. Results also show significant contributions of the horizontal vorticity to the magnitude of PV and its production within the storm. The storm-scale PV budgets show that the above-mentioned amplification of PV results partly from the net internal dynamical forcing between the PV condensing and diabatic production and partly from the continuous lateral PV fluxes from the ITCZ. Without the latter, Eugene would likely be shorter lived after the merger under the influence of intense vertical shear and colder sea surface temperatures. The vorticity budget reveals that the storm-scale rotational growth occurs in the deep troposphere as a result of the increased flux convergence of absolute vorticity during the merging phase. Unlike the previously hypothesized downward growth associated with merging MCVs, the most rapid growth rate is found in the bottom layers of the merger because of the frictional convergence. It is concluded that tropical cyclogenesis from merging MCVs occurs from the bottom upward.
    • Download: (7.231Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Genesis of Tropical Storm Eugene (2005) from Merging Vortices Associated with ITCZ Breakdowns. Part II: Roles of Vortex Merger and Ambient Potential Vorticity

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208318
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorKieu, Chanh Q.
    contributor authorZhang, Da-Lin
    date accessioned2017-06-09T16:23:10Z
    date available2017-06-09T16:23:10Z
    date copyright2009/07/01
    date issued2009
    identifier issn0022-4928
    identifier otherams-66928.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208318
    description abstractIn this study, the roles of merging midlevel mesoscale convective vortices (MCVs) and convectively generated potential vorticity (PV) patches embedded in the intertropical convergence zone (ITCZ) in determining tropical cyclogenesis are examined by calculating PV and absolute vorticity budgets with a cloud-resolving simulation of Tropical Storm Eugene (2005). Results show that the vortex merger occurs as the gradual capture of small-scale PV patches within a slow-drifting MCV by another fast-moving MCV, thus concentrating high PV near the merger?s circulation center, with its peak amplitude located slightly above the melting level. The merging phase is characterized by sharp increases in surface heat fluxes, low-level convergence, latent heat release (and upward motion), lower tropospheric PV, surface pressure falls, and growth of cyclonic vorticity from the bottom upward. Melting and freezing appear to affect markedly the vertical structures of diabatic heating, convergence, absolute vorticity, and PV, as well the production of PV during the life cycle of Eugene. Results also show significant contributions of the horizontal vorticity to the magnitude of PV and its production within the storm. The storm-scale PV budgets show that the above-mentioned amplification of PV results partly from the net internal dynamical forcing between the PV condensing and diabatic production and partly from the continuous lateral PV fluxes from the ITCZ. Without the latter, Eugene would likely be shorter lived after the merger under the influence of intense vertical shear and colder sea surface temperatures. The vorticity budget reveals that the storm-scale rotational growth occurs in the deep troposphere as a result of the increased flux convergence of absolute vorticity during the merging phase. Unlike the previously hypothesized downward growth associated with merging MCVs, the most rapid growth rate is found in the bottom layers of the merger because of the frictional convergence. It is concluded that tropical cyclogenesis from merging MCVs occurs from the bottom upward.
    publisherAmerican Meteorological Society
    titleGenesis of Tropical Storm Eugene (2005) from Merging Vortices Associated with ITCZ Breakdowns. Part II: Roles of Vortex Merger and Ambient Potential Vorticity
    typeJournal Paper
    journal volume66
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2008JAS2905.1
    journal fristpage1980
    journal lastpage1996
    treeJournal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian