YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Average Predictability Time. Part II: Seamless Diagnoses of Predictability on Multiple Time Scales

    Source: Journal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 005::page 1188
    Author:
    DelSole, Timothy
    ,
    Tippett, Michael K.
    DOI: 10.1175/2008JAS2869.1
    Publisher: American Meteorological Society
    Abstract: This paper proposes a new method for diagnosing predictability on multiple time scales without time averaging. The method finds components that maximize the average predictability time (APT) of a system, where APT is defined as the integral of the average predictability over all lead times. Basing the predictability measure on the Mahalanobis metric leads to a complete, uncorrelated set of components that can be ordered by their contribution to APT, analogous to the way principal components decompose variance. The components and associated APTs are invariant to nonsingular linear transformations, allowing variables with different units and natural variability to be considered in a single state vector without normalization. For prediction models derived from linear regression, maximizing APT is equivalent to maximizing the sum of squared multiple correlations between the component and the time-lagged state vector. The new method is used to diagnose predictability of 1000-hPa zonal velocity on time scales from 6 h to decades. The leading predictable component is dominated by a linear trend and presumably identifies a climate change signal. The next component is strongly correlated with ENSO indices and hence is identified with seasonal-to-interannual predictability. The third component is related to annular modes and presents decadal variability as well as a trend. The next few components have APTs exceeding 10 days. A reconstruction of the tropical zonal wind field based on the leading seven components reveals eastward propagation of anomalies with time scales consistent with the Madden?Julian oscillation. The remaining components have time scales less than a week and hence are identified with weather predictability. The detection of predictability on these time scales without time averaging is possible by virtue of the fact that predictability on different time scales is characterized by different spatial structures, which can be optimally extracted by suitable projections.
    • Download: (2.314Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Average Predictability Time. Part II: Seamless Diagnoses of Predictability on Multiple Time Scales

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208304
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorDelSole, Timothy
    contributor authorTippett, Michael K.
    date accessioned2017-06-09T16:23:08Z
    date available2017-06-09T16:23:08Z
    date copyright2009/05/01
    date issued2009
    identifier issn0022-4928
    identifier otherams-66915.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208304
    description abstractThis paper proposes a new method for diagnosing predictability on multiple time scales without time averaging. The method finds components that maximize the average predictability time (APT) of a system, where APT is defined as the integral of the average predictability over all lead times. Basing the predictability measure on the Mahalanobis metric leads to a complete, uncorrelated set of components that can be ordered by their contribution to APT, analogous to the way principal components decompose variance. The components and associated APTs are invariant to nonsingular linear transformations, allowing variables with different units and natural variability to be considered in a single state vector without normalization. For prediction models derived from linear regression, maximizing APT is equivalent to maximizing the sum of squared multiple correlations between the component and the time-lagged state vector. The new method is used to diagnose predictability of 1000-hPa zonal velocity on time scales from 6 h to decades. The leading predictable component is dominated by a linear trend and presumably identifies a climate change signal. The next component is strongly correlated with ENSO indices and hence is identified with seasonal-to-interannual predictability. The third component is related to annular modes and presents decadal variability as well as a trend. The next few components have APTs exceeding 10 days. A reconstruction of the tropical zonal wind field based on the leading seven components reveals eastward propagation of anomalies with time scales consistent with the Madden?Julian oscillation. The remaining components have time scales less than a week and hence are identified with weather predictability. The detection of predictability on these time scales without time averaging is possible by virtue of the fact that predictability on different time scales is characterized by different spatial structures, which can be optimally extracted by suitable projections.
    publisherAmerican Meteorological Society
    titleAverage Predictability Time. Part II: Seamless Diagnoses of Predictability on Multiple Time Scales
    typeJournal Paper
    journal volume66
    journal issue5
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2008JAS2869.1
    journal fristpage1188
    journal lastpage1204
    treeJournal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian