YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Average Predictability Time. Part I: Theory

    Source: Journal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 005::page 1172
    Author:
    DelSole, Timothy
    ,
    Tippett, Michael K.
    DOI: 10.1175/2008JAS2868.1
    Publisher: American Meteorological Society
    Abstract: This paper introduces the average predictability time (APT) for characterizing the overall predictability of a system. APT is the integral of a predictability measure over all lead times. The underlying predictability measure is based on the Mahalanobis metric, which is invariant to linear transformation of the prediction variables and hence gives results that are independent of the (arbitrary) basis set used to represent the state. The APT is superior to some integral time scales used to characterize the time scale of a random process because the latter vanishes in situations when it should not, whereas the APT converges to reasonable values. The APT also can be written in terms of the power spectrum, thereby clarifying the connection between predictability and the power spectrum. In essence, predictability is related to the width of spectral peaks, with strong, narrow peaks associated with high predictability and nearly flat spectra associated with low predictability. Closed form expressions for the APT for linear stochastic models are derived. For a given dynamical operator, the stochastic forcing that minimizes APT is one that allows transformation of the original stochastic model into a set of uncoupled, independent stochastic models. Loosely speaking, coupling enhances predictability. A rigorous upper bound on the predictability of linear stochastic models is derived, which clarifies the connection between predictability at short and long lead times, as well as the choice of norm for measuring error growth. Surprisingly, APT can itself be interpreted as the ?total variance? of an alternative stochastic model, which means that generalized stability theory and dynamical systems theory can be used to understand APT. The APT can be decomposed into an uncorrelated set of components that maximize predictability time, analogous to the way principle component analysis decomposes variance. Part II of this paper develops a practical method for performing this decomposition and applies it to meteorological data.
    • Download: (684.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Average Predictability Time. Part I: Theory

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208303
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorDelSole, Timothy
    contributor authorTippett, Michael K.
    date accessioned2017-06-09T16:23:07Z
    date available2017-06-09T16:23:07Z
    date copyright2009/05/01
    date issued2009
    identifier issn0022-4928
    identifier otherams-66914.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208303
    description abstractThis paper introduces the average predictability time (APT) for characterizing the overall predictability of a system. APT is the integral of a predictability measure over all lead times. The underlying predictability measure is based on the Mahalanobis metric, which is invariant to linear transformation of the prediction variables and hence gives results that are independent of the (arbitrary) basis set used to represent the state. The APT is superior to some integral time scales used to characterize the time scale of a random process because the latter vanishes in situations when it should not, whereas the APT converges to reasonable values. The APT also can be written in terms of the power spectrum, thereby clarifying the connection between predictability and the power spectrum. In essence, predictability is related to the width of spectral peaks, with strong, narrow peaks associated with high predictability and nearly flat spectra associated with low predictability. Closed form expressions for the APT for linear stochastic models are derived. For a given dynamical operator, the stochastic forcing that minimizes APT is one that allows transformation of the original stochastic model into a set of uncoupled, independent stochastic models. Loosely speaking, coupling enhances predictability. A rigorous upper bound on the predictability of linear stochastic models is derived, which clarifies the connection between predictability at short and long lead times, as well as the choice of norm for measuring error growth. Surprisingly, APT can itself be interpreted as the ?total variance? of an alternative stochastic model, which means that generalized stability theory and dynamical systems theory can be used to understand APT. The APT can be decomposed into an uncorrelated set of components that maximize predictability time, analogous to the way principle component analysis decomposes variance. Part II of this paper develops a practical method for performing this decomposition and applies it to meteorological data.
    publisherAmerican Meteorological Society
    titleAverage Predictability Time. Part I: Theory
    typeJournal Paper
    journal volume66
    journal issue5
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2008JAS2868.1
    journal fristpage1172
    journal lastpage1187
    treeJournal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian