YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Vertical Structure of Mesoscale Convective Vortices

    Source: Journal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 003::page 686
    Author:
    Davis, Christopher A.
    ,
    Galarneau, Thomas J.
    DOI: 10.1175/2008JAS2819.1
    Publisher: American Meteorological Society
    Abstract: Simulations of two cases of developing mesoscale convective vortices (MCVs) are examined to determine the dynamics governing the origin and vertical structure of these features. Although one case evolves in strong vertical wind shear and the other evolves in modest shear, the evolutions are remarkably similar. In addition to the well-known mesoscale convergence that spins up vorticity in the midtroposphere, the generation of vorticity in the lower troposphere occurs along the convergent outflow boundary of the parent mesoscale convective system (MCS). Lateral transport of this vorticity from the convective region back beneath the midtropospheric vorticity center is important for obtaining a deep column of cyclonic vorticity. However, this behavior would be only transient without a secondary phase of vorticity growth in the lower troposphere that results from a radical change in the divergence profile favoring lower-tropospheric convergence. Following the decay of the nocturnal MCS, subsequent convection occurs in a condition of greater relative humidity through the lower troposphere and small conditional instability. Vorticity and potential vorticity are efficiently produced near the top of the boundary layer and a cyclonic circulation appears at the surface.
    • Download: (6.096Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Vertical Structure of Mesoscale Convective Vortices

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208281
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorDavis, Christopher A.
    contributor authorGalarneau, Thomas J.
    date accessioned2017-06-09T16:23:04Z
    date available2017-06-09T16:23:04Z
    date copyright2009/03/01
    date issued2009
    identifier issn0022-4928
    identifier otherams-66895.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208281
    description abstractSimulations of two cases of developing mesoscale convective vortices (MCVs) are examined to determine the dynamics governing the origin and vertical structure of these features. Although one case evolves in strong vertical wind shear and the other evolves in modest shear, the evolutions are remarkably similar. In addition to the well-known mesoscale convergence that spins up vorticity in the midtroposphere, the generation of vorticity in the lower troposphere occurs along the convergent outflow boundary of the parent mesoscale convective system (MCS). Lateral transport of this vorticity from the convective region back beneath the midtropospheric vorticity center is important for obtaining a deep column of cyclonic vorticity. However, this behavior would be only transient without a secondary phase of vorticity growth in the lower troposphere that results from a radical change in the divergence profile favoring lower-tropospheric convergence. Following the decay of the nocturnal MCS, subsequent convection occurs in a condition of greater relative humidity through the lower troposphere and small conditional instability. Vorticity and potential vorticity are efficiently produced near the top of the boundary layer and a cyclonic circulation appears at the surface.
    publisherAmerican Meteorological Society
    titleThe Vertical Structure of Mesoscale Convective Vortices
    typeJournal Paper
    journal volume66
    journal issue3
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2008JAS2819.1
    journal fristpage686
    journal lastpage704
    treeJournal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian