YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Surface Heterogeneity Effects on Regional-Scale Fluxes in Stable Boundary Layers: Surface Temperature Transitions

    Source: Journal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 002::page 412
    Author:
    Stoll, Rob
    ,
    Porté-Agel, Fernando
    DOI: 10.1175/2008JAS2668.1
    Publisher: American Meteorological Society
    Abstract: Large-eddy simulation, with recently developed dynamic subgrid-scale models, is used to study the effect of heterogeneous surface temperature distributions on regional-scale turbulent fluxes in the stable boundary layer (SBL). Simulations are performed of a continuously turbulent SBL with surface heterogeneity added in the form of streamwise transitions in surface temperature. Temperature differences between patches of 6 and 3 K are explored with patch length scales ranging from one-half to twice the equivalent homogeneous boundary layer height. The surface temperature heterogeneity has important effects on the mean wind speed and potential temperature profiles as well as on the surface heat flux distribution. Increasing the difference between the patch temperatures results in decreased magnitude of the average surface heat flux, with a corresponding increase in the mean potential temperature in the boundary layer. The simulation results are also used to test existing models for average surface fluxes over heterogeneous terrain. The tested models fail to fully represent the average turbulent heat flux, with models that break the domain into homogeneous subareas grossly underestimating the heat flux magnitude over patches with relatively colder surface temperatures. Motivated by these results, a new parameterization based on local similarity theory is proposed. The new formulation is found to correct the bias over the cold patches, resulting in improved average surface heat flux calculations.
    • Download: (1.634Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Surface Heterogeneity Effects on Regional-Scale Fluxes in Stable Boundary Layers: Surface Temperature Transitions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208184
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorStoll, Rob
    contributor authorPorté-Agel, Fernando
    date accessioned2017-06-09T16:22:49Z
    date available2017-06-09T16:22:49Z
    date copyright2009/02/01
    date issued2009
    identifier issn0022-4928
    identifier otherams-66807.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208184
    description abstractLarge-eddy simulation, with recently developed dynamic subgrid-scale models, is used to study the effect of heterogeneous surface temperature distributions on regional-scale turbulent fluxes in the stable boundary layer (SBL). Simulations are performed of a continuously turbulent SBL with surface heterogeneity added in the form of streamwise transitions in surface temperature. Temperature differences between patches of 6 and 3 K are explored with patch length scales ranging from one-half to twice the equivalent homogeneous boundary layer height. The surface temperature heterogeneity has important effects on the mean wind speed and potential temperature profiles as well as on the surface heat flux distribution. Increasing the difference between the patch temperatures results in decreased magnitude of the average surface heat flux, with a corresponding increase in the mean potential temperature in the boundary layer. The simulation results are also used to test existing models for average surface fluxes over heterogeneous terrain. The tested models fail to fully represent the average turbulent heat flux, with models that break the domain into homogeneous subareas grossly underestimating the heat flux magnitude over patches with relatively colder surface temperatures. Motivated by these results, a new parameterization based on local similarity theory is proposed. The new formulation is found to correct the bias over the cold patches, resulting in improved average surface heat flux calculations.
    publisherAmerican Meteorological Society
    titleSurface Heterogeneity Effects on Regional-Scale Fluxes in Stable Boundary Layers: Surface Temperature Transitions
    typeJournal Paper
    journal volume66
    journal issue2
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2008JAS2668.1
    journal fristpage412
    journal lastpage431
    treeJournal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian