YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fast Lidar and Radar Multiple-Scattering Models. Part II: Wide-Angle Scattering Using the Time-Dependent Two-Stream Approximation

    Source: Journal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 012::page 3636
    Author:
    Hogan, Robin J.
    ,
    Battaglia, Alessandro
    DOI: 10.1175/2008JAS2643.1
    Publisher: American Meteorological Society
    Abstract: Spaceborne lidar returns from liquid water clouds contain significant contributions from photons that have experienced many wide-angle multiple-scattering events, resulting in returns appearing to originate from far beyond the end of the cloud. A similar effect occurs for spaceborne millimeter-wave radar observations of deep convective clouds. An efficient method is described for calculating the time-dependent returns from such a medium by splitting the photons into those that have taken a near-direct path out to and back from a single backscattering event (in the case of lidar, accounting for small-angle forward scatterings on the way, as described in Part I of this paper) and those that have experienced wide-angle multiple-scattering events. This paper describes the modeling of the latter using the time-dependent two-stream approximation, which reduces the problem to solving a pair of coupled partial differential equations for the energy of the photons traveling toward and away from the instrument. To determine what fraction of this energy is detected by the receiver, the lateral variance of photon position is modeled by the Ornstein?Fürth formula, in which both the ballistic and diffusive limits of photon behavior are treated; this is considerably more accurate than simple diffusion theory. By assuming that the lateral distribution can be described by a Gaussian, the fraction of photons within the receiver field of view may be calculated. The method performs well in comparison to Monte Carlo calculations (for both radar and lidar) but is much more efficient. This opens the way for multiple scattering to be accounted for in radar and lidar retrieval schemes.
    • Download: (1.281Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fast Lidar and Radar Multiple-Scattering Models. Part II: Wide-Angle Scattering Using the Time-Dependent Two-Stream Approximation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208171
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHogan, Robin J.
    contributor authorBattaglia, Alessandro
    date accessioned2017-06-09T16:22:47Z
    date available2017-06-09T16:22:47Z
    date copyright2008/12/01
    date issued2008
    identifier issn0022-4928
    identifier otherams-66796.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208171
    description abstractSpaceborne lidar returns from liquid water clouds contain significant contributions from photons that have experienced many wide-angle multiple-scattering events, resulting in returns appearing to originate from far beyond the end of the cloud. A similar effect occurs for spaceborne millimeter-wave radar observations of deep convective clouds. An efficient method is described for calculating the time-dependent returns from such a medium by splitting the photons into those that have taken a near-direct path out to and back from a single backscattering event (in the case of lidar, accounting for small-angle forward scatterings on the way, as described in Part I of this paper) and those that have experienced wide-angle multiple-scattering events. This paper describes the modeling of the latter using the time-dependent two-stream approximation, which reduces the problem to solving a pair of coupled partial differential equations for the energy of the photons traveling toward and away from the instrument. To determine what fraction of this energy is detected by the receiver, the lateral variance of photon position is modeled by the Ornstein?Fürth formula, in which both the ballistic and diffusive limits of photon behavior are treated; this is considerably more accurate than simple diffusion theory. By assuming that the lateral distribution can be described by a Gaussian, the fraction of photons within the receiver field of view may be calculated. The method performs well in comparison to Monte Carlo calculations (for both radar and lidar) but is much more efficient. This opens the way for multiple scattering to be accounted for in radar and lidar retrieval schemes.
    publisherAmerican Meteorological Society
    titleFast Lidar and Radar Multiple-Scattering Models. Part II: Wide-Angle Scattering Using the Time-Dependent Two-Stream Approximation
    typeJournal Paper
    journal volume65
    journal issue12
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2008JAS2643.1
    journal fristpage3636
    journal lastpage3651
    treeJournal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian