YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Genesis of Tropical Storm Eugene (2005) from Merging Vortices Associated with ITCZ Breakdowns. Part I: Observational and Modeling Analyses

    Source: Journal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 011::page 3419
    Author:
    Kieu, Chanh Q.
    ,
    Zhang, Da-Lin
    DOI: 10.1175/2008JAS2605.1
    Publisher: American Meteorological Society
    Abstract: Although tropical cyclogenesis occurs over all tropical warm ocean basins, the eastern Pacific appears to have the highest frequency of tropical cyclogenesis events per unit area. In this study, tropical cyclogenesis from merging mesoscale convective vortices (MCVs) associated with breakdowns of the intertropical convergence zone (ITCZ) is examined. This is achieved through a case study of the processes leading to the genesis of Tropical Storm Eugene (2005) over the eastern Pacific using the National Centers for Environmental Prediction reanalysis, satellite data, and 4-day multinested cloud-resolving simulations with the Weather Research and Forecast (WRF) model at the finest grid size of 1.33 km. Observational analyses reveal the initiations of two MCVs on the eastern ends of the ITCZ breakdowns that occurred more than 2 days and 1000 km apart. The WRF model reproduces their different movements, intensity and size changes, and vortex?vortex interaction at nearly the right timing and location at 39 h into the integration as well as the subsequent track and intensity of the merger in association with the poleward rollup of the ITCZ. Model results show that the two MCVs are merged in a coalescence and capture mode due to their different larger-scale steering flows and sizes. As the two MCVs are being merged, the low- to midlevel potential vorticity and tangential flows increase substantially; the latter occurs more rapidly in the lower troposphere, helping initiate the wind-induced surface heat exchange process leading to the genesis of Eugene with a diameter of 400 km. Subsequently, the merger moves poleward with characters of both MCVs. The simulated tropical storm exhibits many features that are similar to a hurricane, including the warm-cored ?eye? and the rotating ?eyewall.? It is also shown that vertical shear associated with a midlevel easterly jet leads to the downshear tilt and the wavenumber-1 rainfall structures during the genesis stage, and the upshear generation of moist downdrafts in the vicinity of the eyewall in the minimum equivalent potential temperature layer. Based on the above results, it is concluded that the ITCZ provides a favorable environment with dynamical instability, high humidity, and background vorticity, but it is the merger of the two MCVs that is critical for the genesis of Eugene. The storm decays as it moves northwestward into an environment with increasing vertical shear, dry intrusion, and colder sea surface temperatures. The results appear to have important implications for the high frequency of development of tropical cyclones in the eastern Pacific.
    • Download: (4.371Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Genesis of Tropical Storm Eugene (2005) from Merging Vortices Associated with ITCZ Breakdowns. Part I: Observational and Modeling Analyses

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208151
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorKieu, Chanh Q.
    contributor authorZhang, Da-Lin
    date accessioned2017-06-09T16:22:45Z
    date available2017-06-09T16:22:45Z
    date copyright2008/11/01
    date issued2008
    identifier issn0022-4928
    identifier otherams-66778.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208151
    description abstractAlthough tropical cyclogenesis occurs over all tropical warm ocean basins, the eastern Pacific appears to have the highest frequency of tropical cyclogenesis events per unit area. In this study, tropical cyclogenesis from merging mesoscale convective vortices (MCVs) associated with breakdowns of the intertropical convergence zone (ITCZ) is examined. This is achieved through a case study of the processes leading to the genesis of Tropical Storm Eugene (2005) over the eastern Pacific using the National Centers for Environmental Prediction reanalysis, satellite data, and 4-day multinested cloud-resolving simulations with the Weather Research and Forecast (WRF) model at the finest grid size of 1.33 km. Observational analyses reveal the initiations of two MCVs on the eastern ends of the ITCZ breakdowns that occurred more than 2 days and 1000 km apart. The WRF model reproduces their different movements, intensity and size changes, and vortex?vortex interaction at nearly the right timing and location at 39 h into the integration as well as the subsequent track and intensity of the merger in association with the poleward rollup of the ITCZ. Model results show that the two MCVs are merged in a coalescence and capture mode due to their different larger-scale steering flows and sizes. As the two MCVs are being merged, the low- to midlevel potential vorticity and tangential flows increase substantially; the latter occurs more rapidly in the lower troposphere, helping initiate the wind-induced surface heat exchange process leading to the genesis of Eugene with a diameter of 400 km. Subsequently, the merger moves poleward with characters of both MCVs. The simulated tropical storm exhibits many features that are similar to a hurricane, including the warm-cored ?eye? and the rotating ?eyewall.? It is also shown that vertical shear associated with a midlevel easterly jet leads to the downshear tilt and the wavenumber-1 rainfall structures during the genesis stage, and the upshear generation of moist downdrafts in the vicinity of the eyewall in the minimum equivalent potential temperature layer. Based on the above results, it is concluded that the ITCZ provides a favorable environment with dynamical instability, high humidity, and background vorticity, but it is the merger of the two MCVs that is critical for the genesis of Eugene. The storm decays as it moves northwestward into an environment with increasing vertical shear, dry intrusion, and colder sea surface temperatures. The results appear to have important implications for the high frequency of development of tropical cyclones in the eastern Pacific.
    publisherAmerican Meteorological Society
    titleGenesis of Tropical Storm Eugene (2005) from Merging Vortices Associated with ITCZ Breakdowns. Part I: Observational and Modeling Analyses
    typeJournal Paper
    journal volume65
    journal issue11
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2008JAS2605.1
    journal fristpage3419
    journal lastpage3439
    treeJournal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian