YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Subgrid-Scale Parameterization with Conditional Markov Chains

    Source: Journal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 008::page 2661
    Author:
    Crommelin, Daan
    ,
    Vanden-Eijnden, Eric
    DOI: 10.1175/2008JAS2566.1
    Publisher: American Meteorological Society
    Abstract: A new approach is proposed for stochastic parameterization of subgrid-scale processes in models of atmospheric or oceanic circulation. The new approach relies on two key ingredients: first, the unresolved processes are represented by a Markov chain whose properties depend on the state of the resolved model variables; second, the properties of this conditional Markov chain are inferred from data. The parameterization approach is tested by implementing it in the framework of the Lorenz ?96 model. Performance of the parameterization scheme is assessed by inspecting probability distributions, correlation functions, and wave properties, and by carrying out ensemble forecasts. For the Lorenz ?96 model, the parameterization algorithm is shown to give good results with a Markov chain with a few states only and to outperform several other parameterization schemes.
    • Download: (1.607Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Subgrid-Scale Parameterization with Conditional Markov Chains

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208136
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorCrommelin, Daan
    contributor authorVanden-Eijnden, Eric
    date accessioned2017-06-09T16:22:43Z
    date available2017-06-09T16:22:43Z
    date copyright2008/08/01
    date issued2008
    identifier issn0022-4928
    identifier otherams-66764.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208136
    description abstractA new approach is proposed for stochastic parameterization of subgrid-scale processes in models of atmospheric or oceanic circulation. The new approach relies on two key ingredients: first, the unresolved processes are represented by a Markov chain whose properties depend on the state of the resolved model variables; second, the properties of this conditional Markov chain are inferred from data. The parameterization approach is tested by implementing it in the framework of the Lorenz ?96 model. Performance of the parameterization scheme is assessed by inspecting probability distributions, correlation functions, and wave properties, and by carrying out ensemble forecasts. For the Lorenz ?96 model, the parameterization algorithm is shown to give good results with a Markov chain with a few states only and to outperform several other parameterization schemes.
    publisherAmerican Meteorological Society
    titleSubgrid-Scale Parameterization with Conditional Markov Chains
    typeJournal Paper
    journal volume65
    journal issue8
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2008JAS2566.1
    journal fristpage2661
    journal lastpage2675
    treeJournal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian