YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analysis of the Impact of Model Nonlinearities in Inverse Problem Solving

    Source: Journal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 009::page 2803
    Author:
    Vukicevic, T.
    ,
    Posselt, D.
    DOI: 10.1175/2008JAS2534.1
    Publisher: American Meteorological Society
    Abstract: In this study, the relationship between nonlinear model properties and inverse problem solutions is analyzed using a numerical technique based on the inverse problem theory formulated by Mosegaard and Tarantola. According to this theory, the inverse problem and solution are defined via convolution and conjunction of probability density functions (PDFs) that represent stochastic information obtained from the model, observations, and prior knowledge in a joint multidimensional space. This theory provides an explicit analysis of the nonlinear model function, together with information about uncertainties in the model, observations, and prior knowledge through construction of the joint probability density, from which marginal solution functions can then be evaluated. The numerical analysis technique derived from the theory computes the component PDFs in discretized form via a combination of function mapping on a discrete grid in the model and observation phase space and Monte Carlo sampling from known parametric distributions. The efficacy of the numerical analysis technique is demonstrated through its application to two well-known simplified models of atmospheric physics: damped oscillations and Lorenz?s three-component model of dry cellular convection. The major findings of this study include the following: (i) Use of a nonmonotonic forward model in the inverse problem gives rise to the potential for a multimodal posterior PDF, the realization of which depends on the information content of the observations and on observation and model uncertainties. (ii) The cumulative effect of observations over time, space, or both could render the final posterior PDF unimodal, even with the nonmonotonic forward model. (iii) A greater number of independent observations are needed to constrain the solution in the case of a nonmonotonic nonlinear model than for a monotonic nonlinear or linear forward model for a given number of degrees of freedom in control parameter space. (iv) A nonlinear monotonic forward model gives rise to a skewed unimodal posterior PDF, implying a well-posed maximum likelihood inverse problem. (v) The presence of model error greatly increases the possibility of capturing multiple modes in the posterior PDF with the nonmonotonic nonlinear model. (vi) In the case of a nonlinear forward model, use of a Gaussian approximation for the prior update has a similar effect to an increase in model error, which indicates there is the potential to produce a biased mean central estimate even when observations and model are unbiased.
    • Download: (1.746Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analysis of the Impact of Model Nonlinearities in Inverse Problem Solving

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208129
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorVukicevic, T.
    contributor authorPosselt, D.
    date accessioned2017-06-09T16:22:42Z
    date available2017-06-09T16:22:42Z
    date copyright2008/09/01
    date issued2008
    identifier issn0022-4928
    identifier otherams-66758.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208129
    description abstractIn this study, the relationship between nonlinear model properties and inverse problem solutions is analyzed using a numerical technique based on the inverse problem theory formulated by Mosegaard and Tarantola. According to this theory, the inverse problem and solution are defined via convolution and conjunction of probability density functions (PDFs) that represent stochastic information obtained from the model, observations, and prior knowledge in a joint multidimensional space. This theory provides an explicit analysis of the nonlinear model function, together with information about uncertainties in the model, observations, and prior knowledge through construction of the joint probability density, from which marginal solution functions can then be evaluated. The numerical analysis technique derived from the theory computes the component PDFs in discretized form via a combination of function mapping on a discrete grid in the model and observation phase space and Monte Carlo sampling from known parametric distributions. The efficacy of the numerical analysis technique is demonstrated through its application to two well-known simplified models of atmospheric physics: damped oscillations and Lorenz?s three-component model of dry cellular convection. The major findings of this study include the following: (i) Use of a nonmonotonic forward model in the inverse problem gives rise to the potential for a multimodal posterior PDF, the realization of which depends on the information content of the observations and on observation and model uncertainties. (ii) The cumulative effect of observations over time, space, or both could render the final posterior PDF unimodal, even with the nonmonotonic forward model. (iii) A greater number of independent observations are needed to constrain the solution in the case of a nonmonotonic nonlinear model than for a monotonic nonlinear or linear forward model for a given number of degrees of freedom in control parameter space. (iv) A nonlinear monotonic forward model gives rise to a skewed unimodal posterior PDF, implying a well-posed maximum likelihood inverse problem. (v) The presence of model error greatly increases the possibility of capturing multiple modes in the posterior PDF with the nonmonotonic nonlinear model. (vi) In the case of a nonlinear forward model, use of a Gaussian approximation for the prior update has a similar effect to an increase in model error, which indicates there is the potential to produce a biased mean central estimate even when observations and model are unbiased.
    publisherAmerican Meteorological Society
    titleAnalysis of the Impact of Model Nonlinearities in Inverse Problem Solving
    typeJournal Paper
    journal volume65
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2008JAS2534.1
    journal fristpage2803
    journal lastpage2823
    treeJournal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian