YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Wave–Turbulence Interactions in a Breaking Mountain Wave

    Source: Journal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 010::page 3139
    Author:
    Epifanio, Craig C.
    ,
    Qian, Tingting
    DOI: 10.1175/2008JAS2517.1
    Publisher: American Meteorological Society
    Abstract: The mean and turbulent structures in a breaking mountain wave are considered through an ensemble of high-resolution (essentially large-eddy simulation) wave-breaking calculations. Of particular interest are the turbulent heat and momentum fluxes in the breaking wave and their roles in shaping the wave-scale and larger-scale flows. The evolution of the breaking wave in the ensemble mean is found to be broadly consistent with prior low-resolution calculations. A turbulent kinetic energy budget for the wave shows that the turbulence production is almost entirely due to the mean shear. Most of the production is at the top of the leeside shooting flow, where the mean-flow Richardson number is persistently less than 0.25. The turbulent dissipation of mean-flow wave energy is shown to result mainly from the turbulent momentum fluxes?specifically, from the tendency of these fluxes to act counter to the mean-flow disturbance wind. Of particular importance is the eddy deceleration of the leeside shooting flow. The resulting momentum dissipation leads to a mean-flow Bernoulli loss, a cross-stream mean-flow PV flux, and a permanent upward mean-flow vorticity transfer. The dependence of the turbulent fluxes on grid spacing is considered by computing a series of ensembles with grid spacings ranging from L/56 to L/3.7 (where L is the mountain half-width). At the highest resolution, the eddy fluxes are mostly resolved, but with increasing grid spacing, the resolved-scale fluxes decline and the parameterized fluxes become larger. It is shown that for the chosen parameter values, the parameterized fluxes overestimate the mean-flow PV flux: at L/3.7 the PV flux is nearly twice that computed at L/56.
    • Download: (2.329Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Wave–Turbulence Interactions in a Breaking Mountain Wave

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208127
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorEpifanio, Craig C.
    contributor authorQian, Tingting
    date accessioned2017-06-09T16:22:39Z
    date available2017-06-09T16:22:39Z
    date copyright2008/10/01
    date issued2008
    identifier issn0022-4928
    identifier otherams-66756.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208127
    description abstractThe mean and turbulent structures in a breaking mountain wave are considered through an ensemble of high-resolution (essentially large-eddy simulation) wave-breaking calculations. Of particular interest are the turbulent heat and momentum fluxes in the breaking wave and their roles in shaping the wave-scale and larger-scale flows. The evolution of the breaking wave in the ensemble mean is found to be broadly consistent with prior low-resolution calculations. A turbulent kinetic energy budget for the wave shows that the turbulence production is almost entirely due to the mean shear. Most of the production is at the top of the leeside shooting flow, where the mean-flow Richardson number is persistently less than 0.25. The turbulent dissipation of mean-flow wave energy is shown to result mainly from the turbulent momentum fluxes?specifically, from the tendency of these fluxes to act counter to the mean-flow disturbance wind. Of particular importance is the eddy deceleration of the leeside shooting flow. The resulting momentum dissipation leads to a mean-flow Bernoulli loss, a cross-stream mean-flow PV flux, and a permanent upward mean-flow vorticity transfer. The dependence of the turbulent fluxes on grid spacing is considered by computing a series of ensembles with grid spacings ranging from L/56 to L/3.7 (where L is the mountain half-width). At the highest resolution, the eddy fluxes are mostly resolved, but with increasing grid spacing, the resolved-scale fluxes decline and the parameterized fluxes become larger. It is shown that for the chosen parameter values, the parameterized fluxes overestimate the mean-flow PV flux: at L/3.7 the PV flux is nearly twice that computed at L/56.
    publisherAmerican Meteorological Society
    titleWave–Turbulence Interactions in a Breaking Mountain Wave
    typeJournal Paper
    journal volume65
    journal issue10
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2008JAS2517.1
    journal fristpage3139
    journal lastpage3158
    treeJournal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian