YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Probabilistic Forecast Approach for Daily Precipitation Totals

    Source: Weather and Forecasting:;2008:;volume( 023 ):;issue: 004::page 659
    Author:
    Friederichs, Petra
    ,
    Hense, Andreas
    DOI: 10.1175/2007WAF2007051.1
    Publisher: American Meteorological Society
    Abstract: Commonly, postprocessing techniques are employed to calibrate a model forecast. Here, a probabilistic postprocessor is presented that provides calibrated probability and quantile forecasts of precipitation on the local scale. The forecasts are based on large-scale circulation patterns of the 12-h forecast from the NCEP high-resolution Global Forecast System (GFS). The censored quantile regression is used to estimate selected quantiles of the precipitation amount and the probability of the occurrence of precipitation. The approach accounts for the mixed discrete-continuous character of daily precipitation totals. The forecasts are verified using a new verification score for quantile forecasts, namely the censored quantile verification (CQV) score. The forecast approach is as follows: first, a canonical correlation is employed to correct systematic deviations in the GFS large-scale patterns compared with the NCEP?NCAR reanalysis or the 40-yr ECMWF Re-Analysis (ERA-40). Second, the statistical quantile model between the large-scale circulation and the local precipitation quantile is derived using NCEP and ERA-40 reanalysis data. Then, the statistical quantile model is applied to 12-h forecasts provided by the GFS forecast system. The probabilistic forecasts are reliable and the relative gain in performance of the quantile as well as the probability forecasts compared to the climatological forecasts range between 20% and 50%. The importance of the various parts of the postprocessing is assessed, and the performance is compared to forecasts based on the direct precipitation output from the ECMWF forecast system.
    • Download: (1.206Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Probabilistic Forecast Approach for Daily Precipitation Totals

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207791
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorFriederichs, Petra
    contributor authorHense, Andreas
    date accessioned2017-06-09T16:21:42Z
    date available2017-06-09T16:21:42Z
    date copyright2008/08/01
    date issued2008
    identifier issn0882-8156
    identifier otherams-66453.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207791
    description abstractCommonly, postprocessing techniques are employed to calibrate a model forecast. Here, a probabilistic postprocessor is presented that provides calibrated probability and quantile forecasts of precipitation on the local scale. The forecasts are based on large-scale circulation patterns of the 12-h forecast from the NCEP high-resolution Global Forecast System (GFS). The censored quantile regression is used to estimate selected quantiles of the precipitation amount and the probability of the occurrence of precipitation. The approach accounts for the mixed discrete-continuous character of daily precipitation totals. The forecasts are verified using a new verification score for quantile forecasts, namely the censored quantile verification (CQV) score. The forecast approach is as follows: first, a canonical correlation is employed to correct systematic deviations in the GFS large-scale patterns compared with the NCEP?NCAR reanalysis or the 40-yr ECMWF Re-Analysis (ERA-40). Second, the statistical quantile model between the large-scale circulation and the local precipitation quantile is derived using NCEP and ERA-40 reanalysis data. Then, the statistical quantile model is applied to 12-h forecasts provided by the GFS forecast system. The probabilistic forecasts are reliable and the relative gain in performance of the quantile as well as the probability forecasts compared to the climatological forecasts range between 20% and 50%. The importance of the various parts of the postprocessing is assessed, and the performance is compared to forecasts based on the direct precipitation output from the ECMWF forecast system.
    publisherAmerican Meteorological Society
    titleA Probabilistic Forecast Approach for Daily Precipitation Totals
    typeJournal Paper
    journal volume23
    journal issue4
    journal titleWeather and Forecasting
    identifier doi10.1175/2007WAF2007051.1
    journal fristpage659
    journal lastpage673
    treeWeather and Forecasting:;2008:;volume( 023 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian