YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improving Ocean Model Initialization for Coupled Tropical Cyclone Forecast Models Using GODAE Nowcasts

    Source: Monthly Weather Review:;2008:;volume( 136 ):;issue: 007::page 2576
    Author:
    Halliwell, G. R.
    ,
    Shay, L. K.
    ,
    Jacob, S. D.
    ,
    Smedstad, O. M.
    ,
    Uhlhorn, E. W.
    DOI: 10.1175/2007MWR2154.1
    Publisher: American Meteorological Society
    Abstract: To simulate tropical cyclone (TC) intensification, coupled ocean?atmosphere prediction models must realistically reproduce the magnitude and pattern of storm-forced sea surface temperature (SST) cooling. The potential for the ocean to support intensification depends on the thermal energy available to the storm, which in turn depends on both the temperature and thickness of the upper-ocean warm layer. The ocean heat content (OHC) is used as an index of this potential. Large differences in available thermal energy associated with energetic boundary currents and ocean eddies require their accurate initialization in ocean models. Two generations of the experimental U.S. Navy ocean nowcast?forecast system based on the Hybrid Coordinate Ocean Model (HYCOM) are evaluated for this purpose in the NW Caribbean Sea and Gulf of Mexico prior to Hurricanes Isidore and Lili (2002), Ivan (2004), and Katrina (2005). Evaluations are conducted by comparison to in situ measurements, the navy?s three-dimensional Modular Ocean Data Assimilation System (MODAS) temperature and salinity analyses, microwave satellite SST, and fields of OHC and 26°C isotherm depth derived from satellite altimetry. Both nowcast?forecast systems represent the position of important oceanographic features with reasonable accuracy. Initial fields provided by the first-generation product had a large upper-ocean cold bias because the nowcast was initialized from a biased older-model run. SST response in a free-running Isidore simulation is improved by using initial and boundary fields with reduced cold bias generated from a HYCOM nowcast that relaxed model fields to MODAS analyses. A new climatological initialization procedure used for the second-generation nowcast system tended to reduce the cold bias, but the nowcast still could not adequately reproduce anomalously warm conditions present before all storms within the first few months following nowcast initialization. The initial cold biases in both nowcast products tended to decrease with time. A realistic free-running HYCOM simulation of the ocean response to Ivan illustrates the critical importance of correctly initializing both warm-core rings and cold-core eddies to correctly simulate the magnitude and pattern of SST cooling.
    • Download: (1.852Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improving Ocean Model Initialization for Coupled Tropical Cyclone Forecast Models Using GODAE Nowcasts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207628
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorHalliwell, G. R.
    contributor authorShay, L. K.
    contributor authorJacob, S. D.
    contributor authorSmedstad, O. M.
    contributor authorUhlhorn, E. W.
    date accessioned2017-06-09T16:21:10Z
    date available2017-06-09T16:21:10Z
    date copyright2008/07/01
    date issued2008
    identifier issn0027-0644
    identifier otherams-66306.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207628
    description abstractTo simulate tropical cyclone (TC) intensification, coupled ocean?atmosphere prediction models must realistically reproduce the magnitude and pattern of storm-forced sea surface temperature (SST) cooling. The potential for the ocean to support intensification depends on the thermal energy available to the storm, which in turn depends on both the temperature and thickness of the upper-ocean warm layer. The ocean heat content (OHC) is used as an index of this potential. Large differences in available thermal energy associated with energetic boundary currents and ocean eddies require their accurate initialization in ocean models. Two generations of the experimental U.S. Navy ocean nowcast?forecast system based on the Hybrid Coordinate Ocean Model (HYCOM) are evaluated for this purpose in the NW Caribbean Sea and Gulf of Mexico prior to Hurricanes Isidore and Lili (2002), Ivan (2004), and Katrina (2005). Evaluations are conducted by comparison to in situ measurements, the navy?s three-dimensional Modular Ocean Data Assimilation System (MODAS) temperature and salinity analyses, microwave satellite SST, and fields of OHC and 26°C isotherm depth derived from satellite altimetry. Both nowcast?forecast systems represent the position of important oceanographic features with reasonable accuracy. Initial fields provided by the first-generation product had a large upper-ocean cold bias because the nowcast was initialized from a biased older-model run. SST response in a free-running Isidore simulation is improved by using initial and boundary fields with reduced cold bias generated from a HYCOM nowcast that relaxed model fields to MODAS analyses. A new climatological initialization procedure used for the second-generation nowcast system tended to reduce the cold bias, but the nowcast still could not adequately reproduce anomalously warm conditions present before all storms within the first few months following nowcast initialization. The initial cold biases in both nowcast products tended to decrease with time. A realistic free-running HYCOM simulation of the ocean response to Ivan illustrates the critical importance of correctly initializing both warm-core rings and cold-core eddies to correctly simulate the magnitude and pattern of SST cooling.
    publisherAmerican Meteorological Society
    titleImproving Ocean Model Initialization for Coupled Tropical Cyclone Forecast Models Using GODAE Nowcasts
    typeJournal Paper
    journal volume136
    journal issue7
    journal titleMonthly Weather Review
    identifier doi10.1175/2007MWR2154.1
    journal fristpage2576
    journal lastpage2591
    treeMonthly Weather Review:;2008:;volume( 136 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian