YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impact Study of AMSR-E Radiances in the NCEP Global Data Assimilation System

    Source: Monthly Weather Review:;2008:;volume( 136 ):;issue: 002::page 541
    Author:
    Kazumori, Masahiro
    ,
    Liu, Quanhua
    ,
    Treadon, Russ
    ,
    Derber, John C.
    DOI: 10.1175/2007MWR2147.1
    Publisher: American Meteorological Society
    Abstract: The impact of radiance observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) was investigated in the National Centers for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS). The GDAS used NCEP?s Gridpoint Statistical Interpolation (GSI) analysis system and the operational NCEP global forecast model. To improve the performance of AMSR-E low-frequency channels, a new microwave ocean emissivity model and its adjoint with respect to the surface wind speed and temperature were developed and incorporated into the assimilation system. The most significant impacts of AMSR-E radiances on the analysis were an increase in temperature of about 0.2 K at 850 hPa at the higher latitudes and a decrease in humidity of about 0.1 g kg?1 at 850 hPa over the ocean when the new emissivity model was used. There was no significant difference in the mean 6-h rainfall in the assimilation cycle. The forecasts made from the assimilation that included the AMSR-E data showed small improvements in the anomaly correlation of geopotential height at 1000 and 500 hPa in the Southern Hemisphere and reductions in the root-mean-square error (RMSE) for 500-hPa geopotential height in the extratropics of both hemispheres. Use of the new emissivity model resulted in improved RMSE for temperature forecasts from 1000 to 100 hPa in the extratropics of both hemispheres. The assimilation of AMSR-E radiances data using the emissivity model improved the track forecast for Hurricane Katrina in the 26 August 2005 case, whereas the assimilation using the NCEP operational emissivity model, FAST Emissivity Model, version 1 (FASTEM-1), degraded it.
    • Download: (3.244Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impact Study of AMSR-E Radiances in the NCEP Global Data Assimilation System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207624
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorKazumori, Masahiro
    contributor authorLiu, Quanhua
    contributor authorTreadon, Russ
    contributor authorDerber, John C.
    date accessioned2017-06-09T16:21:09Z
    date available2017-06-09T16:21:09Z
    date copyright2008/02/01
    date issued2008
    identifier issn0027-0644
    identifier otherams-66302.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207624
    description abstractThe impact of radiance observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) was investigated in the National Centers for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS). The GDAS used NCEP?s Gridpoint Statistical Interpolation (GSI) analysis system and the operational NCEP global forecast model. To improve the performance of AMSR-E low-frequency channels, a new microwave ocean emissivity model and its adjoint with respect to the surface wind speed and temperature were developed and incorporated into the assimilation system. The most significant impacts of AMSR-E radiances on the analysis were an increase in temperature of about 0.2 K at 850 hPa at the higher latitudes and a decrease in humidity of about 0.1 g kg?1 at 850 hPa over the ocean when the new emissivity model was used. There was no significant difference in the mean 6-h rainfall in the assimilation cycle. The forecasts made from the assimilation that included the AMSR-E data showed small improvements in the anomaly correlation of geopotential height at 1000 and 500 hPa in the Southern Hemisphere and reductions in the root-mean-square error (RMSE) for 500-hPa geopotential height in the extratropics of both hemispheres. Use of the new emissivity model resulted in improved RMSE for temperature forecasts from 1000 to 100 hPa in the extratropics of both hemispheres. The assimilation of AMSR-E radiances data using the emissivity model improved the track forecast for Hurricane Katrina in the 26 August 2005 case, whereas the assimilation using the NCEP operational emissivity model, FAST Emissivity Model, version 1 (FASTEM-1), degraded it.
    publisherAmerican Meteorological Society
    titleImpact Study of AMSR-E Radiances in the NCEP Global Data Assimilation System
    typeJournal Paper
    journal volume136
    journal issue2
    journal titleMonthly Weather Review
    identifier doi10.1175/2007MWR2147.1
    journal fristpage541
    journal lastpage559
    treeMonthly Weather Review:;2008:;volume( 136 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian