YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simultaneous Estimation of Microphysical Parameters and Atmospheric State with Simulated Radar Data and Ensemble Square Root Kalman Filter. Part II: Parameter Estimation Experiments

    Source: Monthly Weather Review:;2008:;volume( 136 ):;issue: 005::page 1649
    Author:
    Tong, Mingjing
    ,
    Xue, Ming
    DOI: 10.1175/2007MWR2071.1
    Publisher: American Meteorological Society
    Abstract: The ensemble Kalman filter method is applied to correct errors in five fundamental microphysical parameters that are closely involved in the definition of drop/particle size distributions of microphysical species in a commonly used single-moment ice microphysics scheme, for a model-simulated supercell storm, using radar data. The five parameters include the intercept parameters for rain, snow, and hail/graupel and the bulk densities of hail/graupel and snow. The ensemble square root Kalman filter (EnSRF) is employed for simultaneous state and parameter estimation. The five microphysical parameters are estimated individually or in different combinations starting from different initial guesses. A data selection procedure based on correlation information is introduced, which combined with variance inflation, effectively avoids the collapse of the spread of parameter ensemble, hence filter divergence. Parameter estimation results demonstrate, for the first time, that the ensemble-based method can be used to correct model errors in microphysical parameters through simultaneous state and parameter estimation, using radar reflectivity observations. When error exists in only one of the microphysical parameters, the parameter can be successfully estimated without exception. The estimation of multiple parameters is less reliable, mainly because the identifiability of the parameters becomes weaker and the problem might have no unique solution. The parameter estimation results are found to be very sensitive to the realization of the initial parameter ensemble, which is mainly related to the use of relatively small ensemble sizes. Increasing ensemble size generally improves the parameter estimation. The quality of parameter estimation also depends on the quality of observation data. It is also found that the results of state estimation are generally improved when simultaneous parameter estimation is performed, even when the estimated parameter values are not very accurate.
    • Download: (2.930Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simultaneous Estimation of Microphysical Parameters and Atmospheric State with Simulated Radar Data and Ensemble Square Root Kalman Filter. Part II: Parameter Estimation Experiments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207568
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorTong, Mingjing
    contributor authorXue, Ming
    date accessioned2017-06-09T16:21:01Z
    date available2017-06-09T16:21:01Z
    date copyright2008/05/01
    date issued2008
    identifier issn0027-0644
    identifier otherams-66252.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207568
    description abstractThe ensemble Kalman filter method is applied to correct errors in five fundamental microphysical parameters that are closely involved in the definition of drop/particle size distributions of microphysical species in a commonly used single-moment ice microphysics scheme, for a model-simulated supercell storm, using radar data. The five parameters include the intercept parameters for rain, snow, and hail/graupel and the bulk densities of hail/graupel and snow. The ensemble square root Kalman filter (EnSRF) is employed for simultaneous state and parameter estimation. The five microphysical parameters are estimated individually or in different combinations starting from different initial guesses. A data selection procedure based on correlation information is introduced, which combined with variance inflation, effectively avoids the collapse of the spread of parameter ensemble, hence filter divergence. Parameter estimation results demonstrate, for the first time, that the ensemble-based method can be used to correct model errors in microphysical parameters through simultaneous state and parameter estimation, using radar reflectivity observations. When error exists in only one of the microphysical parameters, the parameter can be successfully estimated without exception. The estimation of multiple parameters is less reliable, mainly because the identifiability of the parameters becomes weaker and the problem might have no unique solution. The parameter estimation results are found to be very sensitive to the realization of the initial parameter ensemble, which is mainly related to the use of relatively small ensemble sizes. Increasing ensemble size generally improves the parameter estimation. The quality of parameter estimation also depends on the quality of observation data. It is also found that the results of state estimation are generally improved when simultaneous parameter estimation is performed, even when the estimated parameter values are not very accurate.
    publisherAmerican Meteorological Society
    titleSimultaneous Estimation of Microphysical Parameters and Atmospheric State with Simulated Radar Data and Ensemble Square Root Kalman Filter. Part II: Parameter Estimation Experiments
    typeJournal Paper
    journal volume136
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/2007MWR2071.1
    journal fristpage1649
    journal lastpage1668
    treeMonthly Weather Review:;2008:;volume( 136 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian