YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ensemble Held–Suarez Test with a Spectral Transform Model: Variability, Sensitivity, and Convergence

    Source: Monthly Weather Review:;2008:;volume( 136 ):;issue: 003::page 1075
    Author:
    Wan, Hui
    ,
    Giorgetta, Marco A.
    ,
    Bonaventura, Luca
    DOI: 10.1175/2007MWR2044.1
    Publisher: American Meteorological Society
    Abstract: The idealized test case proposed by Held and Suarez is carried out with the atmospheric general circulation model ECHAM5 of the Max Planck Institute for Meteorology. The aim is to investigate the sensitivity of the solutions of the spectral dynamical core to spatial and temporal resolution, and to evaluate the numerical convergence of the solutions. Low-frequency fluctuations at time scales as long as thousands of days are found in ultralong integrations. To distinguish the effect of changed resolution from the fluctuations caused by the internal variability, the ensemble method is employed in experiments at resolutions ranging from T31 to T159 with 16 to 81 vertical levels. Significance of the differences between ensembles is assessed by three different statistical tests. Convergence property of the numerical solution is concisely summarized by a ratio index. Results show that the simulated climate state in the Held?Suarez test is sensitive to spatial resolution. Increase of horizontal resolution leads to slight weakening and poleward shift of the westerly jets. Significant warming is detected in high latitudes, especially near the polar tropopause, while the tropical tropopause becomes cooler. The baroclinic wave activity intensifies considerably with increased horizontal resolution. Higher vertical resolution also leads to stronger eddy variances and cooling near the tropical tropopause, but equatorward shift of the westerly jets. The solutions show an indication of convergence at T85L31 resolution according to all the three statistical tests applied. Differences between integrations with various time steps are judged to be within the noise level induced by the inherent low-frequency variability.
    • Download: (2.834Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ensemble Held–Suarez Test with a Spectral Transform Model: Variability, Sensitivity, and Convergence

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207551
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorWan, Hui
    contributor authorGiorgetta, Marco A.
    contributor authorBonaventura, Luca
    date accessioned2017-06-09T16:20:58Z
    date available2017-06-09T16:20:58Z
    date copyright2008/03/01
    date issued2008
    identifier issn0027-0644
    identifier otherams-66237.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207551
    description abstractThe idealized test case proposed by Held and Suarez is carried out with the atmospheric general circulation model ECHAM5 of the Max Planck Institute for Meteorology. The aim is to investigate the sensitivity of the solutions of the spectral dynamical core to spatial and temporal resolution, and to evaluate the numerical convergence of the solutions. Low-frequency fluctuations at time scales as long as thousands of days are found in ultralong integrations. To distinguish the effect of changed resolution from the fluctuations caused by the internal variability, the ensemble method is employed in experiments at resolutions ranging from T31 to T159 with 16 to 81 vertical levels. Significance of the differences between ensembles is assessed by three different statistical tests. Convergence property of the numerical solution is concisely summarized by a ratio index. Results show that the simulated climate state in the Held?Suarez test is sensitive to spatial resolution. Increase of horizontal resolution leads to slight weakening and poleward shift of the westerly jets. Significant warming is detected in high latitudes, especially near the polar tropopause, while the tropical tropopause becomes cooler. The baroclinic wave activity intensifies considerably with increased horizontal resolution. Higher vertical resolution also leads to stronger eddy variances and cooling near the tropical tropopause, but equatorward shift of the westerly jets. The solutions show an indication of convergence at T85L31 resolution according to all the three statistical tests applied. Differences between integrations with various time steps are judged to be within the noise level induced by the inherent low-frequency variability.
    publisherAmerican Meteorological Society
    titleEnsemble Held–Suarez Test with a Spectral Transform Model: Variability, Sensitivity, and Convergence
    typeJournal Paper
    journal volume136
    journal issue3
    journal titleMonthly Weather Review
    identifier doi10.1175/2007MWR2044.1
    journal fristpage1075
    journal lastpage1092
    treeMonthly Weather Review:;2008:;volume( 136 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian