YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Atypical Thermodynamic Profiles in Hurricanes

    Source: Monthly Weather Review:;2008:;volume( 136 ):;issue: 002::page 631
    Author:
    Barnes, Gary M.
    DOI: 10.1175/2007MWR2033.1
    Publisher: American Meteorological Society
    Abstract: The global positioning system dropwindsondes deployed in Hurricane Bonnie on 26 August 1998 with supporting deployments in Hurricanes Mitch (1998) and Humberto (2001) are used to identify three unusual thermodynamic structures in the lower-cloud and subcloud layers. Two of these structures impact the energy content of the inflow and therefore the intensity of the hurricane. First, positive lapse rates of equivalent potential temperature are found near the top of the inflow. These layers insulate the inflow from the negative impacts of entrainment mixing and promote rapid energy increases, especially near the eyewall. The second structure is a rapid decrease of equivalent potential temperature adjacent to the sea surface. This is essentially a prominent surface layer that owes its existence to both higher moisture content and a superadiabatic lapse rate. The steep lapse rate most often occurs under and near the eyewall where wind speeds at the surface exceed hurricane force. The author speculates that water loading from spray increases the residence time of air parcels in the surface layer, contributing to the creation of this structure. The third feature is a moist absolutely unstable layer previously identified by Bryan and Fritsch for the midlatitudes. These layers are found adjacent to the eyewall, in rainbands, and in the hub cloud within the eye and are evidence of mesoscale or vortex-scale convergence and the very modest instabilities often found in the core of a hurricane.
    • Download: (1.323Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Atypical Thermodynamic Profiles in Hurricanes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207546
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorBarnes, Gary M.
    date accessioned2017-06-09T16:20:57Z
    date available2017-06-09T16:20:57Z
    date copyright2008/02/01
    date issued2008
    identifier issn0027-0644
    identifier otherams-66232.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207546
    description abstractThe global positioning system dropwindsondes deployed in Hurricane Bonnie on 26 August 1998 with supporting deployments in Hurricanes Mitch (1998) and Humberto (2001) are used to identify three unusual thermodynamic structures in the lower-cloud and subcloud layers. Two of these structures impact the energy content of the inflow and therefore the intensity of the hurricane. First, positive lapse rates of equivalent potential temperature are found near the top of the inflow. These layers insulate the inflow from the negative impacts of entrainment mixing and promote rapid energy increases, especially near the eyewall. The second structure is a rapid decrease of equivalent potential temperature adjacent to the sea surface. This is essentially a prominent surface layer that owes its existence to both higher moisture content and a superadiabatic lapse rate. The steep lapse rate most often occurs under and near the eyewall where wind speeds at the surface exceed hurricane force. The author speculates that water loading from spray increases the residence time of air parcels in the surface layer, contributing to the creation of this structure. The third feature is a moist absolutely unstable layer previously identified by Bryan and Fritsch for the midlatitudes. These layers are found adjacent to the eyewall, in rainbands, and in the hub cloud within the eye and are evidence of mesoscale or vortex-scale convergence and the very modest instabilities often found in the core of a hurricane.
    publisherAmerican Meteorological Society
    titleAtypical Thermodynamic Profiles in Hurricanes
    typeJournal Paper
    journal volume136
    journal issue2
    journal titleMonthly Weather Review
    identifier doi10.1175/2007MWR2033.1
    journal fristpage631
    journal lastpage643
    treeMonthly Weather Review:;2008:;volume( 136 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian